metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1191-m1192

Bis(1,3-di­butylthiourea)dicyanido­mercury(II)

aDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan
*Correspondence e-mail: saeed_a786@hotmail.com, akkurt@erciyes.edu.tr

(Received 2 September 2009; accepted 3 September 2009; online 9 September 2009)

In the title compound, [Hg(CN)2(C9H20N2S)2], the Hg atom lies on a twofold rotation axis. There is only half a mol­ecule in the asymmetric unit. The Hg atom has a distorted tetra­hedral coordination involving the S atoms of two 1-butyl-3-propyl­thio­urea groups and the C atoms of the two CN anions. In the crystal packing, adjacent mol­ecules are connected by inter­molecular N—H⋯N and N—H⋯S hydrogen bonds, forming infinite chains in three dimensions.

Related literature

For the coordination chemistry of thio­urea-type ligands, see: Nadeem et al. (2009[Nadeem, S., Rauf, M. K., Ahmad, S., Ebihara, M., Tirmizi, S. A. & Badshah, A. B. (2009). Transition Met. Chem. 34, 197-202.], 2008[Nadeem, S., Khawar Rauf, M., Ebihara, M., Tirmizi, S. A. & Ahmad, S. (2008). Acta Cryst. E64, m698-m699.]); Zoufalá et al. (2007[Zoufalá, P., Rüffer, T., Lang, H., Ahmad, S. & Mufakkar, M. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, x219-x220.]); Khan et al. (2007[Khan, I. U., Mufakkar, M., Ahmad, S., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, m2550-m2551.]); Hanif et al. (2007[Hanif, M., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2007). Acta Cryst. E63, m2594.]); Fuks et al. (2005[Fuks, L., Sadlej-Sosnowska, N., Samochocka, K. & Starosta, W. (2005). J. Mol. Struct. 740, 229-235.]); Moro et al. (2009[Moro, A. C., Netto, A. V. G., Ananias, S. R., Quilles, M. B., Carlos, I. Z., Pavan, F. R., Leite, C. Q. F. & Hörner, M. (2009). Eur. J. Med. Chem. In the press. ]); Matesanz & Souza (2007[Matesanz, A. I. & Souza, P. (2007). J. Inorg. Biochem. 101, 1354-1361.]). For crystallographic reports about mercury(II) complexes containing thio­amides, see: Popovic et al. (2000[Popovic, Z., Pavlovic, G., Matkovic-Calogovic, D., Soldin, Z., Rajic, M., Vikic-Topic, D. & Kovacek, D. (2000). Inorg. Chim. Acta, 306, 142-152.], 2002[Popovic, Z., Soldin, Z., Pavlovic, G., Calogovic, D. M. & Rajic, M. M. S. (2002). Struct. Chem. 13, 425-436.]); Pavlović et al. (2000[Pavlović, G., Popović, Z., Soldin, Z. & Matković-Čalogović, D. (2000). Acta Cryst. C56, 61-63.]); Jiang et al. (2001[Jiang, X. N., Xu, D., Yuan, D. R., Yu, W. T., Lu, M. K., Gu, S. Y., Zu, G. H. & Fu, Q. (2001). Chin. Chem. Lett. 12, 279-282,.]); Wu et al. (2004[Wu, Z.-Y., Xu, D.-J. & Hung, C.-H. (2004). J. Coord. Chem. 57, 791-796.]). For the spectroscopy and structural chemistry of cyanide complexes of silver(I) and gold(I) with thio­nes, see: Hanif et al. (2007[Hanif, M., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2007). Acta Cryst. E63, m2594.]); Wu et al. (2004[Wu, Z.-Y., Xu, D.-J. & Hung, C.-H. (2004). J. Coord. Chem. 57, 791-796.]); Ahmad, Isab & Ashraf (2002[Ahmad, S., Isab, A. A. & Ashraf, W. (2002). Inorg. Chem. Commun. 5, 816-819.]); Ahmad, Isab & Perzanowski (2002[Ahmad, S., Isab, A. A. & Perzanowski, H. P. (2002). Can. J. Chem. 80, 1279-1283.]); Ashraf et al. (2002[Ashraf, W., Ahmad, S. & Isab, A. A. (2002). Transition Met. Chem. 29, 400-404.]); Ahmad & Isab (2001[Ahmad, S. & Isab, A. A. (2001). Inorg. Chem. Commun. 4, 362-364.]); Ahmad (2004[Ahmad, S. (2004). Coord. Chem. Rev. 248, 231-243.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(CN)2(C9H20N2S)2]

  • Mr = 629.31

  • Monoclinic, C 2/c

  • a = 17.4692 (3) Å

  • b = 9.5928 (2) Å

  • c = 17.4699 (4) Å

  • β = 111.540 (1)°

  • V = 2723.12 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.82 mm−1

  • T = 296 K

  • 0.14 × 0.15 × 0.17 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 15120 measured reflections

  • 3372 independent reflections

  • 2918 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.044

  • S = 1.02

  • 3372 reflections

  • 134 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.86 2.68 3.479 (2) 155
N3—H3⋯N1ii 0.86 2.20 2.991 (3) 153
C7—H7B⋯S1 0.97 2.67 3.070 (3) 105
Symmetry codes: (i) [-x+2, y, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The coordination chemistry of thiourea type ligands has been the subject of several recent studies because of the relevance of their binding sites to those in living systems (Nadeem et al., 2009; Nadeem et al., 2008; Zoufalá et al., 2007; Khan et al., 2007; Hanif et al., 2007; Fuks et al., 2005; Moro et al., 2009; Matesanz & Souza, 2007). Crystallographic reports about mercury (II) complexes containing thioamides establish that these ligands are coordinated via the sulfur atom(Popovic et al., 2000, 2002; Pavlović, Popović, Soldin et al., 2000; Jiang et al., 2001; Wu et al., 2004). We have been involved in investigating the spectral and structural chemistry of cyanido complexes of silver (I) and gold (I) with thiones with emphasis onligand scrambling reactions (Hanif et al., 2007; Wu et al., 2004; Ahmad, Isab & Ashraf, 2002; Ahmad, Isab & Perzanowski, 2002; Ashraf et al., 2002; Ahmad & Isab, 2001; Ahmad, 2004). As a part ofextension of our work towards complexation of Hg (CN)2 with thiones, we report here the crystal structures of [(N,N/-dibutylthiourea)2Hg(CN)2], (I).

In the title compound (I), (Fig. 1), the Hg anion lies on a twofold rotation axes paralel to the b axis in space group C2/c and one half of the molecule to the other half are connected by this symmetry operation. The Hg atom has a distorted tetrahedral coordination by the S atoms of two N,N/-dibutylthiourea groups and the C atoms of the two CN groups. The bond distances Hg—S and Hg—C are 2.7424 (7) Å and 2.072 (3) Å, and the bond angles C—Hg—C, S—Hg—S and C—Hg—C are 150.51 (11)°, 95.55 (2)° and 100.45 (8)°. All bond lengths and bond angles in (I) are in the range of expected values.

In the crystal packing, the adjacent molecules are connected by intermolecular N—H···N and N—H···S hydrogen bonds (Table 1). In Fig. 2, the packing and hydrogen bonding of (I) are shown viewed down b axis.

Related literature top

For the coordination chemistry of thiourea-type ligands, see: Nadeem et al. (2009, 2008); Zoufalá et al. (2007); Khan et al. (2007); Hanif et al. (2007); Fuks et al. (2005); Moro et al. (2009); Matesanz & Souza (2007). For crystallographic reports about mercury(II) complexes containing thioamides, see: Popovic et al. (2000, 2002); Pavlović et al. (2000); Jiang et al. (2001); Wu et al. (2004). For the spectral and structural chemistry of cyanide complexes of silver(I) and gold(I) with thiones, see: Hanif et al. (2007); Wu et al. (2004); Ahmad, Isab & Ashraf (2002); Ahmad, Isab & Perzanowski (2002); Ashraf et al. (2002); Ahmad & Isab (2001); Ahmad (2004).

Experimental top

For the preparation of the title complex, Hg (CN)2 was prepared first by the reaction of 1 mmol HgCl2 in methanol with 2 mmole of KCN in water. Then 0.253 g (1 mmole) Hg (CN)2 dissolved in15 ml methanol was mixed with 2 equivalents of N,N/-dibutylthiourea in 15 methanol. After stirring for 15 minutes, the resulting mixture was filtered and filtrate was kept at room temperature. After 24 h white crystals were obtained.

Refinement top

H atoms were located geometrically and treated as riding with C—H = 0.97 Å (methylene), C—H = 0.96 Å (methyl) and N—H = 0.86 Å with Uiso(H) = 1.2 or 1.5Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of (I) viewed down b axis. Hydrogen atoms not involved in the showed interactions have been omitted for clarity.
Bis(1,3-dibutylthiourea)dicyanidomercury(II) top
Crystal data top
[Hg(CN)2(C9H20N2S)2]F(000) = 1256
Mr = 629.31Dx = 1.535 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6609 reflections
a = 17.4692 (3) Åθ = 2.5–27.2°
b = 9.5928 (2) ŵ = 5.82 mm1
c = 17.4699 (4) ÅT = 296 K
β = 111.540 (1)°Irregular, white
V = 2723.12 (10) Å30.17 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2918 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.032
Graphite monochromatorθmax = 28.3°, θmin = 2.5°
ϕ and ω scansh = 2323
15120 measured reflectionsk = 1212
3372 independent reflectionsl = 2023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.044H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0211P)2],
where P = (Fo2 + 2Fc2)/3
3372 reflections(Δ/σ)max = 0.001
134 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Hg(CN)2(C9H20N2S)2]V = 2723.12 (10) Å3
Mr = 629.31Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.4692 (3) ŵ = 5.82 mm1
b = 9.5928 (2) ÅT = 296 K
c = 17.4699 (4) Å0.17 × 0.15 × 0.14 mm
β = 111.540 (1)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2918 reflections with I > 2σ(I)
15120 measured reflectionsRint = 0.032
3372 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.044H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
3372 reflectionsΔρmin = 0.72 e Å3
134 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg11.000000.20478 (1)0.750000.0405 (1)
S11.08516 (3)0.39691 (7)0.86634 (4)0.0414 (2)
N10.86048 (15)0.1224 (3)0.81955 (17)0.0718 (10)
N21.11488 (12)0.5094 (2)0.74219 (12)0.0422 (7)
N31.22801 (11)0.4758 (2)0.85840 (12)0.0411 (7)
C10.91098 (16)0.1498 (3)0.79668 (17)0.0475 (9)
C21.14750 (13)0.4655 (2)0.81878 (15)0.0341 (7)
C31.16093 (17)0.5591 (3)0.69240 (17)0.0548 (10)
C41.10347 (17)0.6051 (3)0.60900 (17)0.0534 (10)
C51.0548 (2)0.7334 (4)0.6094 (2)0.0633 (12)
C60.9979 (3)0.7767 (4)0.5243 (3)0.0875 (17)
C71.27223 (15)0.4387 (3)0.94375 (16)0.0441 (8)
C81.27906 (17)0.5571 (3)1.00242 (16)0.0473 (9)
C91.3311 (2)0.5232 (3)1.09034 (17)0.0586 (11)
C101.3434 (3)0.6466 (4)1.1477 (2)0.0795 (14)
H21.062100.508800.719500.0510*
H31.256500.507100.831200.0490*
H3A1.196000.485000.686300.0660*
H3B1.195800.636600.720200.0660*
H4A1.135300.622300.574700.0640*
H4B1.065500.529700.584100.0640*
H5A1.092400.809300.634200.0760*
H5B1.022400.716500.643300.0760*
H6A1.028800.785500.489100.1310*
H6B0.973000.864600.527500.1310*
H6C0.955800.707500.502400.1310*
H7A1.327100.407800.950100.0530*
H7B1.244300.361200.958100.0530*
H8A1.224300.582500.999500.0570*
H8B1.302500.637300.985100.0570*
H9A1.384500.490401.092700.0700*
H9B1.305200.448201.109200.0700*
H10A1.367600.722201.128500.1190*
H10B1.379100.620401.202100.1190*
H10C1.291100.675401.148700.1190*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0323 (1)0.0459 (1)0.0478 (1)0.00000.0199 (1)0.0000
S10.0359 (3)0.0566 (4)0.0340 (3)0.0115 (3)0.0154 (3)0.0005 (3)
N10.0516 (14)0.104 (2)0.0668 (17)0.0297 (15)0.0300 (13)0.0046 (17)
N20.0326 (10)0.0594 (14)0.0352 (12)0.0068 (9)0.0133 (9)0.0057 (11)
N30.0313 (10)0.0545 (13)0.0383 (12)0.0043 (9)0.0136 (9)0.0051 (10)
C10.0385 (13)0.0553 (16)0.0463 (16)0.0125 (12)0.0126 (12)0.0037 (14)
C20.0330 (11)0.0369 (13)0.0340 (14)0.0030 (9)0.0142 (10)0.0015 (11)
C30.0473 (15)0.076 (2)0.0491 (17)0.0018 (14)0.0270 (14)0.0144 (15)
C40.0563 (16)0.069 (2)0.0396 (16)0.0019 (14)0.0232 (13)0.0039 (15)
C50.076 (2)0.066 (2)0.052 (2)0.0065 (17)0.0285 (17)0.0103 (16)
C60.084 (3)0.101 (3)0.074 (3)0.026 (2)0.025 (2)0.020 (2)
C70.0353 (12)0.0476 (15)0.0446 (16)0.0040 (11)0.0089 (11)0.0054 (13)
C80.0477 (14)0.0466 (15)0.0427 (16)0.0038 (12)0.0110 (12)0.0064 (13)
C90.0665 (19)0.0565 (19)0.0433 (17)0.0044 (15)0.0090 (15)0.0050 (15)
C100.107 (3)0.066 (2)0.051 (2)0.005 (2)0.012 (2)0.0008 (19)
Geometric parameters (Å, º) top
Hg1—S12.7424 (7)C3—H3A0.9700
Hg1—C12.072 (3)C3—H3B0.9700
Hg1—S1i2.7424 (7)C4—H4A0.9700
Hg1—C1i2.072 (3)C4—H4B0.9700
S1—C21.724 (2)C5—H5A0.9700
N1—C11.125 (4)C5—H5B0.9700
N2—C21.316 (3)C6—H6A0.9600
N2—C31.465 (4)C6—H6B0.9600
N3—C21.324 (3)C6—H6C0.9600
N3—C71.449 (3)C7—H7A0.9700
N2—H20.8600C7—H7B0.9700
N3—H30.8600C8—H8A0.9700
C3—C41.500 (4)C8—H8B0.9700
C4—C51.497 (5)C9—H9A0.9700
C5—C61.512 (6)C9—H9B0.9700
C7—C81.505 (4)C10—H10A0.9600
C8—C91.505 (4)C10—H10B0.9600
C9—C101.514 (5)C10—H10C0.9600
S1···C13.693 (3)H3A···N32.8500
S1···C83.684 (3)H3A···H32.3700
S1···N2i3.479 (2)H3A···H10Cvi2.5200
S1···H7B2.6700H3B···N32.7400
S1···H2i2.6800H3B···H32.2200
S1···H6Aii3.1900H3B···H5A2.5000
N1···N3iii2.991 (3)H3B···N1iv2.7600
N1···C3iii3.431 (4)H4A···H6A2.4700
N2···S1i3.479 (2)H4B···H22.4000
N3···N1iv2.991 (3)H4B···H6C2.5700
N1···H3Biii2.7600H5A···H3B2.5000
N1···H3iii2.2000H5A···H7Avii2.5600
N2···H5B2.7400H5B···N22.7400
N3···H3A2.8500H5B···H22.3500
N3···H3B2.7400H6A···H4A2.4700
C1···S13.693 (3)H6A···S1vi3.1900
C1···C2i3.574 (4)H6C···H4B2.5700
C3···N1iv3.431 (4)H7A···H9A2.4500
C8···S13.684 (3)H7A···H5Aviii2.5600
C1···H10Bv3.0100H7B···S12.6700
C3···H32.4400H7B···H9B2.6000
C5···H22.8600H7B···H7Bix2.5500
H2···C52.8600H8A···H10C2.5900
H2···H4B2.4000H8B···H10A2.4800
H2···H5B2.3500H9A···H7A2.4500
H2···S1i2.6800H9B···H7B2.6000
H3···C32.4400H10A···H8B2.4800
H3···H3A2.3700H10B···C1x3.0100
H3···H3B2.2200H10C···H8A2.5900
H3···N1iv2.2000H10C···H3Aii2.5200
S1—Hg1—C199.25 (8)C4—C5—H5A109.00
S1—Hg1—S1i95.55 (2)C4—C5—H5B109.00
S1—Hg1—C1i100.45 (8)C6—C5—H5A109.00
S1i—Hg1—C1100.45 (8)C6—C5—H5B109.00
C1—Hg1—C1i150.51 (11)H5A—C5—H5B108.00
S1i—Hg1—C1i99.25 (8)C5—C6—H6A109.00
Hg1—S1—C299.56 (8)C5—C6—H6B109.00
C2—N2—C3125.5 (2)C5—C6—H6C109.00
C2—N3—C7125.6 (2)H6A—C6—H6B109.00
C2—N2—H2117.00H6A—C6—H6C110.00
C3—N2—H2117.00H6B—C6—H6C109.00
C2—N3—H3117.00N3—C7—H7A109.00
C7—N3—H3117.00N3—C7—H7B109.00
Hg1—C1—N1177.4 (3)C8—C7—H7A109.00
S1—C2—N2119.84 (19)C8—C7—H7B109.00
S1—C2—N3120.95 (18)H7A—C7—H7B108.00
N2—C2—N3119.2 (2)C7—C8—H8A109.00
N2—C3—C4110.8 (2)C7—C8—H8B109.00
C3—C4—C5114.6 (2)C9—C8—H8A109.00
C4—C5—C6113.0 (3)C9—C8—H8B109.00
N3—C7—C8113.2 (2)H8A—C8—H8B108.00
C7—C8—C9113.5 (2)C8—C9—H9A109.00
C8—C9—C10113.1 (3)C8—C9—H9B109.00
N2—C3—H3A109.00C10—C9—H9A109.00
N2—C3—H3B109.00C10—C9—H9B109.00
C4—C3—H3A109.00H9A—C9—H9B108.00
C4—C3—H3B109.00C9—C10—H10A109.00
H3A—C3—H3B108.00C9—C10—H10B109.00
C3—C4—H4A109.00C9—C10—H10C109.00
C3—C4—H4B109.00H10A—C10—H10B110.00
C5—C4—H4A109.00H10A—C10—H10C109.00
C5—C4—H4B109.00H10B—C10—H10C110.00
H4A—C4—H4B108.00
C1—Hg1—S1—C2169.87 (11)C7—N3—C2—S12.8 (3)
S1i—Hg1—S1—C268.30 (8)C7—N3—C2—N2176.7 (2)
C1i—Hg1—S1—C232.19 (11)C2—N3—C7—C888.9 (3)
Hg1—S1—C2—N251.24 (18)N2—C3—C4—C567.9 (3)
Hg1—S1—C2—N3129.28 (17)C3—C4—C5—C6179.8 (3)
C3—N2—C2—S1174.74 (19)N3—C7—C8—C9175.0 (2)
C3—N2—C2—N35.8 (3)C7—C8—C9—C10175.2 (3)
C2—N2—C3—C4178.1 (2)
Symmetry codes: (i) x+2, y, z+3/2; (ii) x, y+1, z+1/2; (iii) x1/2, y1/2, z; (iv) x+1/2, y+1/2, z; (v) x1/2, y+1/2, z1/2; (vi) x, y+1, z1/2; (vii) x+5/2, y+1/2, z+3/2; (viii) x+5/2, y1/2, z+3/2; (ix) x+5/2, y+1/2, z+2; (x) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.683.479 (2)155
N3—H3···N1iv0.862.202.991 (3)153
C7—H7B···S10.972.673.070 (3)105
Symmetry codes: (i) x+2, y, z+3/2; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Hg(CN)2(C9H20N2S)2]
Mr629.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)17.4692 (3), 9.5928 (2), 17.4699 (4)
β (°) 111.540 (1)
V3)2723.12 (10)
Z4
Radiation typeMo Kα
µ (mm1)5.82
Crystal size (mm)0.17 × 0.15 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15120, 3372, 2918
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.044, 1.02
No. of reflections3372
No. of parameters134
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.72

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.86002.68003.479 (2)155.00
N3—H3···N1ii0.86002.20002.991 (3)153.00
C7—H7B···S10.97002.67003.070 (3)105.00
Symmetry codes: (i) x+2, y, z+3/2; (ii) x+1/2, y+1/2, z.
 

References

First citationAhmad, S. (2004). Coord. Chem. Rev. 248, 231–243.  Web of Science CrossRef CAS Google Scholar
First citationAhmad, S. & Isab, A. A. (2001). Inorg. Chem. Commun. 4, 362–364.  Web of Science CrossRef CAS Google Scholar
First citationAhmad, S., Isab, A. A. & Ashraf, W. (2002). Inorg. Chem. Commun. 5, 816–819.  Web of Science CrossRef CAS Google Scholar
First citationAhmad, S., Isab, A. A. & Perzanowski, H. P. (2002). Can. J. Chem. 80, 1279–1283.  Web of Science CrossRef CAS Google Scholar
First citationAshraf, W., Ahmad, S. & Isab, A. A. (2002). Transition Met. Chem. 29, 400–404.  Web of Science CrossRef Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFuks, L., Sadlej-Sosnowska, N., Samochocka, K. & Starosta, W. (2005). J. Mol. Struct. 740, 229–235.  Web of Science CSD CrossRef CAS Google Scholar
First citationHanif, M., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2007). Acta Cryst. E63, m2594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, X. N., Xu, D., Yuan, D. R., Yu, W. T., Lu, M. K., Gu, S. Y., Zu, G. H. & Fu, Q. (2001). Chin. Chem. Lett. 12, 279–282,.  Google Scholar
First citationKhan, I. U., Mufakkar, M., Ahmad, S., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, m2550–m2551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatesanz, A. I. & Souza, P. (2007). J. Inorg. Biochem. 101, 1354–1361.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoro, A. C., Netto, A. V. G., Ananias, S. R., Quilles, M. B., Carlos, I. Z., Pavan, F. R., Leite, C. Q. F. & Hörner, M. (2009). Eur. J. Med. Chem. In the press.  Google Scholar
First citationNadeem, S., Khawar Rauf, M., Ebihara, M., Tirmizi, S. A. & Ahmad, S. (2008). Acta Cryst. E64, m698–m699.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNadeem, S., Rauf, M. K., Ahmad, S., Ebihara, M., Tirmizi, S. A. & Badshah, A. B. (2009). Transition Met. Chem. 34, 197–202.  Web of Science CSD CrossRef CAS Google Scholar
First citationPavlović, G., Popović, Z., Soldin, Z. & Matković-Čalogović, D. (2000). Acta Cryst. C56, 61–63.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPopovic, Z., Pavlovic, G., Matkovic-Calogovic, D., Soldin, Z., Rajic, M., Vikic-Topic, D. & Kovacek, D. (2000). Inorg. Chim. Acta, 306, 142–152.  Web of Science CSD CrossRef CAS Google Scholar
First citationPopovic, Z., Soldin, Z., Pavlovic, G., Calogovic, D. M. & Rajic, M. M. S. (2002). Struct. Chem. 13, 425–436.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Z.-Y., Xu, D.-J. & Hung, C.-H. (2004). J. Coord. Chem. 57, 791–796.  Web of Science CSD CrossRef CAS Google Scholar
First citationZoufalá, P., Rüffer, T., Lang, H., Ahmad, S. & Mufakkar, M. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, x219–x220.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1191-m1192
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds