metal-organic compounds
Bis(1,3-dibutylthiourea)dicyanidomercury(II)
aDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan
*Correspondence e-mail: saeed_a786@hotmail.com, akkurt@erciyes.edu.tr
In the title compound, [Hg(CN)2(C9H20N2S)2], the Hg atom lies on a twofold rotation axis. There is only half a molecule in the The Hg atom has a distorted tetrahedral coordination involving the S atoms of two 1-butyl-3-propylthiourea groups and the C atoms of the two CN− anions. In the crystal packing, adjacent molecules are connected by intermolecular N—H⋯N and N—H⋯S hydrogen bonds, forming infinite chains in three dimensions.
Related literature
For the coordination chemistry of thiourea-type ligands, see: Nadeem et al. (2009, 2008); Zoufalá et al. (2007); Khan et al. (2007); Hanif et al. (2007); Fuks et al. (2005); Moro et al. (2009); Matesanz & Souza (2007). For crystallographic reports about mercury(II) complexes containing thioamides, see: Popovic et al. (2000, 2002); Pavlović et al. (2000); Jiang et al. (2001); Wu et al. (2004). For the spectroscopy and structural chemistry of cyanide complexes of silver(I) and gold(I) with thiones, see: Hanif et al. (2007); Wu et al. (2004); Ahmad, Isab & Ashraf (2002); Ahmad, Isab & Perzanowski (2002); Ashraf et al. (2002); Ahmad & Isab (2001); Ahmad (2004).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809035594/bt5052sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809035594/bt5052Isup2.hkl
For the preparation of the title complex, Hg (CN)2 was prepared first by the reaction of 1 mmol HgCl2 in methanol with 2 mmole of KCN in water. Then 0.253 g (1 mmole) Hg (CN)2 dissolved in15 ml methanol was mixed with 2 equivalents of N,N/-dibutylthiourea in 15 methanol. After stirring for 15 minutes, the resulting mixture was filtered and filtrate was kept at room temperature. After 24 h white crystals were obtained.
H atoms were located geometrically and treated as riding with C—H = 0.97 Å (methylene), C—H = 0.96 Å (methyl) and N—H = 0.86 Å with Uiso(H) = 1.2 or 1.5Ueq(C, N).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).[Hg(CN)2(C9H20N2S)2] | F(000) = 1256 |
Mr = 629.31 | Dx = 1.535 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6609 reflections |
a = 17.4692 (3) Å | θ = 2.5–27.2° |
b = 9.5928 (2) Å | µ = 5.82 mm−1 |
c = 17.4699 (4) Å | T = 296 K |
β = 111.540 (1)° | Irregular, white |
V = 2723.12 (10) Å3 | 0.17 × 0.15 × 0.14 mm |
Z = 4 |
Bruker Kappa APEXII CCD area-detector diffractometer | 2918 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.032 |
Graphite monochromator | θmax = 28.3°, θmin = 2.5° |
ϕ and ω scans | h = −23→23 |
15120 measured reflections | k = −12→12 |
3372 independent reflections | l = −20→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.044 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0211P)2], where P = (Fo2 + 2Fc2)/3 |
3372 reflections | (Δ/σ)max = 0.001 |
134 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.72 e Å−3 |
[Hg(CN)2(C9H20N2S)2] | V = 2723.12 (10) Å3 |
Mr = 629.31 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 17.4692 (3) Å | µ = 5.82 mm−1 |
b = 9.5928 (2) Å | T = 296 K |
c = 17.4699 (4) Å | 0.17 × 0.15 × 0.14 mm |
β = 111.540 (1)° |
Bruker Kappa APEXII CCD area-detector diffractometer | 2918 reflections with I > 2σ(I) |
15120 measured reflections | Rint = 0.032 |
3372 independent reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.044 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.40 e Å−3 |
3372 reflections | Δρmin = −0.72 e Å−3 |
134 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 1.00000 | 0.20478 (1) | 0.75000 | 0.0405 (1) | |
S1 | 1.08516 (3) | 0.39691 (7) | 0.86634 (4) | 0.0414 (2) | |
N1 | 0.86048 (15) | 0.1224 (3) | 0.81955 (17) | 0.0718 (10) | |
N2 | 1.11488 (12) | 0.5094 (2) | 0.74219 (12) | 0.0422 (7) | |
N3 | 1.22801 (11) | 0.4758 (2) | 0.85840 (12) | 0.0411 (7) | |
C1 | 0.91098 (16) | 0.1498 (3) | 0.79668 (17) | 0.0475 (9) | |
C2 | 1.14750 (13) | 0.4655 (2) | 0.81878 (15) | 0.0341 (7) | |
C3 | 1.16093 (17) | 0.5591 (3) | 0.69240 (17) | 0.0548 (10) | |
C4 | 1.10347 (17) | 0.6051 (3) | 0.60900 (17) | 0.0534 (10) | |
C5 | 1.0548 (2) | 0.7334 (4) | 0.6094 (2) | 0.0633 (12) | |
C6 | 0.9979 (3) | 0.7767 (4) | 0.5243 (3) | 0.0875 (17) | |
C7 | 1.27223 (15) | 0.4387 (3) | 0.94375 (16) | 0.0441 (8) | |
C8 | 1.27906 (17) | 0.5571 (3) | 1.00242 (16) | 0.0473 (9) | |
C9 | 1.3311 (2) | 0.5232 (3) | 1.09034 (17) | 0.0586 (11) | |
C10 | 1.3434 (3) | 0.6466 (4) | 1.1477 (2) | 0.0795 (14) | |
H2 | 1.06210 | 0.50880 | 0.71950 | 0.0510* | |
H3 | 1.25650 | 0.50710 | 0.83120 | 0.0490* | |
H3A | 1.19600 | 0.48500 | 0.68630 | 0.0660* | |
H3B | 1.19580 | 0.63660 | 0.72020 | 0.0660* | |
H4A | 1.13530 | 0.62230 | 0.57470 | 0.0640* | |
H4B | 1.06550 | 0.52970 | 0.58410 | 0.0640* | |
H5A | 1.09240 | 0.80930 | 0.63420 | 0.0760* | |
H5B | 1.02240 | 0.71650 | 0.64330 | 0.0760* | |
H6A | 1.02880 | 0.78550 | 0.48910 | 0.1310* | |
H6B | 0.97300 | 0.86460 | 0.52750 | 0.1310* | |
H6C | 0.95580 | 0.70750 | 0.50240 | 0.1310* | |
H7A | 1.32710 | 0.40780 | 0.95010 | 0.0530* | |
H7B | 1.24430 | 0.36120 | 0.95810 | 0.0530* | |
H8A | 1.22430 | 0.58250 | 0.99950 | 0.0570* | |
H8B | 1.30250 | 0.63730 | 0.98510 | 0.0570* | |
H9A | 1.38450 | 0.49040 | 1.09270 | 0.0700* | |
H9B | 1.30520 | 0.44820 | 1.10920 | 0.0700* | |
H10A | 1.36760 | 0.72220 | 1.12850 | 0.1190* | |
H10B | 1.37910 | 0.62040 | 1.20210 | 0.1190* | |
H10C | 1.29110 | 0.67540 | 1.14870 | 0.1190* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.0323 (1) | 0.0459 (1) | 0.0478 (1) | 0.0000 | 0.0199 (1) | 0.0000 |
S1 | 0.0359 (3) | 0.0566 (4) | 0.0340 (3) | −0.0115 (3) | 0.0154 (3) | −0.0005 (3) |
N1 | 0.0516 (14) | 0.104 (2) | 0.0668 (17) | −0.0297 (15) | 0.0300 (13) | −0.0046 (17) |
N2 | 0.0326 (10) | 0.0594 (14) | 0.0352 (12) | −0.0068 (9) | 0.0133 (9) | 0.0057 (11) |
N3 | 0.0313 (10) | 0.0545 (13) | 0.0383 (12) | −0.0043 (9) | 0.0136 (9) | 0.0051 (10) |
C1 | 0.0385 (13) | 0.0553 (16) | 0.0463 (16) | −0.0125 (12) | 0.0126 (12) | −0.0037 (14) |
C2 | 0.0330 (11) | 0.0369 (13) | 0.0340 (14) | −0.0030 (9) | 0.0142 (10) | −0.0015 (11) |
C3 | 0.0473 (15) | 0.076 (2) | 0.0491 (17) | −0.0018 (14) | 0.0270 (14) | 0.0144 (15) |
C4 | 0.0563 (16) | 0.069 (2) | 0.0396 (16) | −0.0019 (14) | 0.0232 (13) | 0.0039 (15) |
C5 | 0.076 (2) | 0.066 (2) | 0.052 (2) | 0.0065 (17) | 0.0285 (17) | 0.0103 (16) |
C6 | 0.084 (3) | 0.101 (3) | 0.074 (3) | 0.026 (2) | 0.025 (2) | 0.020 (2) |
C7 | 0.0353 (12) | 0.0476 (15) | 0.0446 (16) | 0.0040 (11) | 0.0089 (11) | 0.0054 (13) |
C8 | 0.0477 (14) | 0.0466 (15) | 0.0427 (16) | 0.0038 (12) | 0.0110 (12) | 0.0064 (13) |
C9 | 0.0665 (19) | 0.0565 (19) | 0.0433 (17) | 0.0044 (15) | 0.0090 (15) | 0.0050 (15) |
C10 | 0.107 (3) | 0.066 (2) | 0.051 (2) | −0.005 (2) | 0.012 (2) | −0.0008 (19) |
Hg1—S1 | 2.7424 (7) | C3—H3A | 0.9700 |
Hg1—C1 | 2.072 (3) | C3—H3B | 0.9700 |
Hg1—S1i | 2.7424 (7) | C4—H4A | 0.9700 |
Hg1—C1i | 2.072 (3) | C4—H4B | 0.9700 |
S1—C2 | 1.724 (2) | C5—H5A | 0.9700 |
N1—C1 | 1.125 (4) | C5—H5B | 0.9700 |
N2—C2 | 1.316 (3) | C6—H6A | 0.9600 |
N2—C3 | 1.465 (4) | C6—H6B | 0.9600 |
N3—C2 | 1.324 (3) | C6—H6C | 0.9600 |
N3—C7 | 1.449 (3) | C7—H7A | 0.9700 |
N2—H2 | 0.8600 | C7—H7B | 0.9700 |
N3—H3 | 0.8600 | C8—H8A | 0.9700 |
C3—C4 | 1.500 (4) | C8—H8B | 0.9700 |
C4—C5 | 1.497 (5) | C9—H9A | 0.9700 |
C5—C6 | 1.512 (6) | C9—H9B | 0.9700 |
C7—C8 | 1.505 (4) | C10—H10A | 0.9600 |
C8—C9 | 1.505 (4) | C10—H10B | 0.9600 |
C9—C10 | 1.514 (5) | C10—H10C | 0.9600 |
S1···C1 | 3.693 (3) | H3A···N3 | 2.8500 |
S1···C8 | 3.684 (3) | H3A···H3 | 2.3700 |
S1···N2i | 3.479 (2) | H3A···H10Cvi | 2.5200 |
S1···H7B | 2.6700 | H3B···N3 | 2.7400 |
S1···H2i | 2.6800 | H3B···H3 | 2.2200 |
S1···H6Aii | 3.1900 | H3B···H5A | 2.5000 |
N1···N3iii | 2.991 (3) | H3B···N1iv | 2.7600 |
N1···C3iii | 3.431 (4) | H4A···H6A | 2.4700 |
N2···S1i | 3.479 (2) | H4B···H2 | 2.4000 |
N3···N1iv | 2.991 (3) | H4B···H6C | 2.5700 |
N1···H3Biii | 2.7600 | H5A···H3B | 2.5000 |
N1···H3iii | 2.2000 | H5A···H7Avii | 2.5600 |
N2···H5B | 2.7400 | H5B···N2 | 2.7400 |
N3···H3A | 2.8500 | H5B···H2 | 2.3500 |
N3···H3B | 2.7400 | H6A···H4A | 2.4700 |
C1···S1 | 3.693 (3) | H6A···S1vi | 3.1900 |
C1···C2i | 3.574 (4) | H6C···H4B | 2.5700 |
C3···N1iv | 3.431 (4) | H7A···H9A | 2.4500 |
C8···S1 | 3.684 (3) | H7A···H5Aviii | 2.5600 |
C1···H10Bv | 3.0100 | H7B···S1 | 2.6700 |
C3···H3 | 2.4400 | H7B···H9B | 2.6000 |
C5···H2 | 2.8600 | H7B···H7Bix | 2.5500 |
H2···C5 | 2.8600 | H8A···H10C | 2.5900 |
H2···H4B | 2.4000 | H8B···H10A | 2.4800 |
H2···H5B | 2.3500 | H9A···H7A | 2.4500 |
H2···S1i | 2.6800 | H9B···H7B | 2.6000 |
H3···C3 | 2.4400 | H10A···H8B | 2.4800 |
H3···H3A | 2.3700 | H10B···C1x | 3.0100 |
H3···H3B | 2.2200 | H10C···H8A | 2.5900 |
H3···N1iv | 2.2000 | H10C···H3Aii | 2.5200 |
S1—Hg1—C1 | 99.25 (8) | C4—C5—H5A | 109.00 |
S1—Hg1—S1i | 95.55 (2) | C4—C5—H5B | 109.00 |
S1—Hg1—C1i | 100.45 (8) | C6—C5—H5A | 109.00 |
S1i—Hg1—C1 | 100.45 (8) | C6—C5—H5B | 109.00 |
C1—Hg1—C1i | 150.51 (11) | H5A—C5—H5B | 108.00 |
S1i—Hg1—C1i | 99.25 (8) | C5—C6—H6A | 109.00 |
Hg1—S1—C2 | 99.56 (8) | C5—C6—H6B | 109.00 |
C2—N2—C3 | 125.5 (2) | C5—C6—H6C | 109.00 |
C2—N3—C7 | 125.6 (2) | H6A—C6—H6B | 109.00 |
C2—N2—H2 | 117.00 | H6A—C6—H6C | 110.00 |
C3—N2—H2 | 117.00 | H6B—C6—H6C | 109.00 |
C2—N3—H3 | 117.00 | N3—C7—H7A | 109.00 |
C7—N3—H3 | 117.00 | N3—C7—H7B | 109.00 |
Hg1—C1—N1 | 177.4 (3) | C8—C7—H7A | 109.00 |
S1—C2—N2 | 119.84 (19) | C8—C7—H7B | 109.00 |
S1—C2—N3 | 120.95 (18) | H7A—C7—H7B | 108.00 |
N2—C2—N3 | 119.2 (2) | C7—C8—H8A | 109.00 |
N2—C3—C4 | 110.8 (2) | C7—C8—H8B | 109.00 |
C3—C4—C5 | 114.6 (2) | C9—C8—H8A | 109.00 |
C4—C5—C6 | 113.0 (3) | C9—C8—H8B | 109.00 |
N3—C7—C8 | 113.2 (2) | H8A—C8—H8B | 108.00 |
C7—C8—C9 | 113.5 (2) | C8—C9—H9A | 109.00 |
C8—C9—C10 | 113.1 (3) | C8—C9—H9B | 109.00 |
N2—C3—H3A | 109.00 | C10—C9—H9A | 109.00 |
N2—C3—H3B | 109.00 | C10—C9—H9B | 109.00 |
C4—C3—H3A | 109.00 | H9A—C9—H9B | 108.00 |
C4—C3—H3B | 109.00 | C9—C10—H10A | 109.00 |
H3A—C3—H3B | 108.00 | C9—C10—H10B | 109.00 |
C3—C4—H4A | 109.00 | C9—C10—H10C | 109.00 |
C3—C4—H4B | 109.00 | H10A—C10—H10B | 110.00 |
C5—C4—H4A | 109.00 | H10A—C10—H10C | 109.00 |
C5—C4—H4B | 109.00 | H10B—C10—H10C | 110.00 |
H4A—C4—H4B | 108.00 | ||
C1—Hg1—S1—C2 | −169.87 (11) | C7—N3—C2—S1 | −2.8 (3) |
S1i—Hg1—S1—C2 | −68.30 (8) | C7—N3—C2—N2 | 176.7 (2) |
C1i—Hg1—S1—C2 | 32.19 (11) | C2—N3—C7—C8 | −88.9 (3) |
Hg1—S1—C2—N2 | 51.24 (18) | N2—C3—C4—C5 | 67.9 (3) |
Hg1—S1—C2—N3 | −129.28 (17) | C3—C4—C5—C6 | 179.8 (3) |
C3—N2—C2—S1 | −174.74 (19) | N3—C7—C8—C9 | −175.0 (2) |
C3—N2—C2—N3 | 5.8 (3) | C7—C8—C9—C10 | 175.2 (3) |
C2—N2—C3—C4 | −178.1 (2) |
Symmetry codes: (i) −x+2, y, −z+3/2; (ii) x, −y+1, z+1/2; (iii) x−1/2, y−1/2, z; (iv) x+1/2, y+1/2, z; (v) x−1/2, −y+1/2, z−1/2; (vi) x, −y+1, z−1/2; (vii) −x+5/2, y+1/2, −z+3/2; (viii) −x+5/2, y−1/2, −z+3/2; (ix) −x+5/2, −y+1/2, −z+2; (x) x+1/2, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···S1i | 0.86 | 2.68 | 3.479 (2) | 155 |
N3—H3···N1iv | 0.86 | 2.20 | 2.991 (3) | 153 |
C7—H7B···S1 | 0.97 | 2.67 | 3.070 (3) | 105 |
Symmetry codes: (i) −x+2, y, −z+3/2; (iv) x+1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Hg(CN)2(C9H20N2S)2] |
Mr | 629.31 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 17.4692 (3), 9.5928 (2), 17.4699 (4) |
β (°) | 111.540 (1) |
V (Å3) | 2723.12 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.82 |
Crystal size (mm) | 0.17 × 0.15 × 0.14 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15120, 3372, 2918 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.044, 1.02 |
No. of reflections | 3372 |
No. of parameters | 134 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.72 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···S1i | 0.8600 | 2.6800 | 3.479 (2) | 155.00 |
N3—H3···N1ii | 0.8600 | 2.2000 | 2.991 (3) | 153.00 |
C7—H7B···S1 | 0.9700 | 2.6700 | 3.070 (3) | 105.00 |
Symmetry codes: (i) −x+2, y, −z+3/2; (ii) x+1/2, y+1/2, z. |
References
Ahmad, S. (2004). Coord. Chem. Rev. 248, 231–243. Web of Science CrossRef CAS Google Scholar
Ahmad, S. & Isab, A. A. (2001). Inorg. Chem. Commun. 4, 362–364. Web of Science CrossRef CAS Google Scholar
Ahmad, S., Isab, A. A. & Ashraf, W. (2002). Inorg. Chem. Commun. 5, 816–819. Web of Science CrossRef CAS Google Scholar
Ahmad, S., Isab, A. A. & Perzanowski, H. P. (2002). Can. J. Chem. 80, 1279–1283. Web of Science CrossRef CAS Google Scholar
Ashraf, W., Ahmad, S. & Isab, A. A. (2002). Transition Met. Chem. 29, 400–404. Web of Science CrossRef Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fuks, L., Sadlej-Sosnowska, N., Samochocka, K. & Starosta, W. (2005). J. Mol. Struct. 740, 229–235. Web of Science CSD CrossRef CAS Google Scholar
Hanif, M., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2007). Acta Cryst. E63, m2594. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jiang, X. N., Xu, D., Yuan, D. R., Yu, W. T., Lu, M. K., Gu, S. Y., Zu, G. H. & Fu, Q. (2001). Chin. Chem. Lett. 12, 279–282,. Google Scholar
Khan, I. U., Mufakkar, M., Ahmad, S., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, m2550–m2551. Web of Science CSD CrossRef IUCr Journals Google Scholar
Matesanz, A. I. & Souza, P. (2007). J. Inorg. Biochem. 101, 1354–1361. Web of Science CSD CrossRef PubMed CAS Google Scholar
Moro, A. C., Netto, A. V. G., Ananias, S. R., Quilles, M. B., Carlos, I. Z., Pavan, F. R., Leite, C. Q. F. & Hörner, M. (2009). Eur. J. Med. Chem. In the press. Google Scholar
Nadeem, S., Khawar Rauf, M., Ebihara, M., Tirmizi, S. A. & Ahmad, S. (2008). Acta Cryst. E64, m698–m699. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nadeem, S., Rauf, M. K., Ahmad, S., Ebihara, M., Tirmizi, S. A. & Badshah, A. B. (2009). Transition Met. Chem. 34, 197–202. Web of Science CSD CrossRef CAS Google Scholar
Pavlović, G., Popović, Z., Soldin, Z. & Matković-Čalogović, D. (2000). Acta Cryst. C56, 61–63. Web of Science CSD CrossRef IUCr Journals Google Scholar
Popovic, Z., Pavlovic, G., Matkovic-Calogovic, D., Soldin, Z., Rajic, M., Vikic-Topic, D. & Kovacek, D. (2000). Inorg. Chim. Acta, 306, 142–152. Web of Science CSD CrossRef CAS Google Scholar
Popovic, Z., Soldin, Z., Pavlovic, G., Calogovic, D. M. & Rajic, M. M. S. (2002). Struct. Chem. 13, 425–436. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, Z.-Y., Xu, D.-J. & Hung, C.-H. (2004). J. Coord. Chem. 57, 791–796. Web of Science CSD CrossRef CAS Google Scholar
Zoufalá, P., Rüffer, T., Lang, H., Ahmad, S. & Mufakkar, M. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, x219–x220. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of thiourea type ligands has been the subject of several recent studies because of the relevance of their binding sites to those in living systems (Nadeem et al., 2009; Nadeem et al., 2008; Zoufalá et al., 2007; Khan et al., 2007; Hanif et al., 2007; Fuks et al., 2005; Moro et al., 2009; Matesanz & Souza, 2007). Crystallographic reports about mercury (II) complexes containing thioamides establish that these ligands are coordinated via the sulfur atom(Popovic et al., 2000, 2002; Pavlović, Popović, Soldin et al., 2000; Jiang et al., 2001; Wu et al., 2004). We have been involved in investigating the spectral and structural chemistry of cyanido complexes of silver (I) and gold (I) with thiones with emphasis onligand scrambling reactions (Hanif et al., 2007; Wu et al., 2004; Ahmad, Isab & Ashraf, 2002; Ahmad, Isab & Perzanowski, 2002; Ashraf et al., 2002; Ahmad & Isab, 2001; Ahmad, 2004). As a part ofextension of our work towards complexation of Hg (CN)2 with thiones, we report here the crystal structures of [(N,N/-dibutylthiourea)2Hg(CN)2], (I).
In the title compound (I), (Fig. 1), the Hg anion lies on a twofold rotation axes paralel to the b axis in space group C2/c and one half of the molecule to the other half are connected by this symmetry operation. The Hg atom has a distorted tetrahedral coordination by the S atoms of two N,N/-dibutylthiourea groups and the C atoms of the two CN groups. The bond distances Hg—S and Hg—C are 2.7424 (7) Å and 2.072 (3) Å, and the bond angles C—Hg—C, S—Hg—S and C—Hg—C are 150.51 (11)°, 95.55 (2)° and 100.45 (8)°. All bond lengths and bond angles in (I) are in the range of expected values.
In the crystal packing, the adjacent molecules are connected by intermolecular N—H···N and N—H···S hydrogen bonds (Table 1). In Fig. 2, the packing and hydrogen bonding of (I) are shown viewed down b axis.