organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methanesulfonamido­benzoic acid

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan
*Correspondence e-mail: hmshafiqhm@yahoo.com

(Received 6 September 2009; accepted 7 September 2009; online 12 September 2009)

In the title compound, C8H9NO4S, an intra­molecular N—H⋯O hydrogen bond gives rise to a six-membered ring. In the crystal structure, two mol­ecules are connected by O—H⋯O hydrogen bonds, forming a centrosymmetric dimer. These dimers are further connected by C—H⋯O hydrogen bonds.

Related literature

For the synthesis and biological evaluation of sulfur-containing heterocyclic compounds, see: Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1775.], 2006[Zia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.], 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]); Xiao & Timberlake (2000[Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773-777.]); Lee & Lee (2002[Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167-169.]). For biological evaluation of sulfonamides, see: Hanson et al. (1999[Hanson, P. R., Probst, D. A., Robinson, R. E. & Yau, M. (1999). Tetrahedron Lett. 40, 4761-4763.]); Moree et al. (1991[Moree, W. J., Van der Marel, G. A. & Liskamp, R. M. (1991). Tetrahedron Lett. 32, 409-411.]); Rough et al. (1998[Rough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., Mc Kerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc. 120, 10994-10995.]). For related literature on sulfonamides, see: Esteve & Bidal (2002[Esteve, C. & Bidal, B. (2002). Tetrahedron Lett. 43, 1019-1021.]); Soledade et al. (2006[Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958-4979.]). For related structures, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.]); Arshad et al. (2008[Arshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283-o2284.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9NO4S

  • Mr = 215.23

  • Triclinic, [P \overline 1]

  • a = 5.2001 (2) Å

  • b = 8.6120 (4) Å

  • c = 11.2314 (5) Å

  • α = 72.675 (3)°

  • β = 84.155 (3)°

  • γ = 86.846 (3)°

  • V = 477.50 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.19 × 0.09 × 0.02 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.941, Tmax = 0.993

  • 9379 measured reflections

  • 2330 independent reflections

  • 1261 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.121

  • S = 1.01

  • 2330 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.78 (3) 1.89 (3) 2.671 (2) 172 (4)
N1—H1⋯O1 0.86 2.03 2.652 (2) 128
C4—H4⋯O3ii 0.93 2.37 3.235 (3) 155
Symmetry codes: (i) -x+2, -y+2, -z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and local programs.

Supporting information


Comment top

Sulfonamides are well known for their enormous potential as biologically active molecules (Hanson et al., 1999; Moree et al., 1991; Rough et al., 1998). Few of these are familiar as anti-hypertensive, anti-convulsant, herbicidal, anti-microbial and anti-microbial activities (Esteve & Bidal, 2002; Soledade et al., 2006; Xiao & Timberlake, 2000; Lee & Lee, 2002). In the present paper, the structure of the 2-[(methylsulfonyl)amino]benzoic acid has been determined as a part of a research program involving the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Zia-ur-Rehman et al., 2005, 2006, 2009). In the molecule of (Fig. 1), bond lengths and bond angles are are almost similar to those in related molecules (Gowda et al., 2007; Arshad et al., 2008) and are within normal ranges. Each molecule exhibits an intramolecular N—H···O hydrogen bond which stabilizes the planar conformation and is linked to an adjacent one through head-to-tail pairs of O—H···O intermolecular interactions giving rise to dimeric motifs typical for carboxylic acids. Neighbouring dimers are further linked to each other through C—H···O interactions (Fig. 2).

Related literature top

For the synthesis and biological evaluation of sulfur-containing heterocyclic compounds, see: Zia-ur-Rehman et al. (2005, 2006, 2009); Xiao & Timberlake (2000); Lee & Lee (2002). For biological evaluation of sulfonamides, see: Hanson et al. (1999); Moree et al. (1991); Rough et al. (1998). For related literature on sulfonamides, see: Esteve & Bidal (2002); Soledade et al. (2006). For related structures, see: Gowda et al. (2007); Arshad et al. (2008).

Experimental top

A mixture of methyl 2-[(methylsulfonyl)amino]benzoate (1.0 g; 4.4 mmoles), sodium hydroxide (0.2 g; 5.0 mmoles) and water (30.0 ml) was stirred at room temperature for a period of one hour followed by addition of dilute hydrochloric acid to Congo Red (pH~5). Precipitates formed were filtered, washed with cold water and dried under vacuum followed by recrystallization in ethanol.

Refinement top

H atoms bond to C and N were placed in geometric positions (N—H = 0.86, Caromatic—H = 0.93, Cmethyl—H = 0.96 Å) using a riding model with Uiso(H) = 1.2Ueq(C,N,O) or Uiso(H) = 1.5Ueq(Cmethyl). The coordinates of the H atom bonded to O were refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 50% probability level.
2-Methanesulfonamidobenzoic acid top
Crystal data top
C8H9NO4SZ = 2
Mr = 215.23F(000) = 224
Triclinic, P1Dx = 1.497 Mg m3
Hall symbol: -P 1Melting point: 373 K
a = 5.2001 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6120 (4) ÅCell parameters from 2313 reflections
c = 11.2314 (5) Åθ = 2.6–26.6°
α = 72.675 (3)°µ = 0.33 mm1
β = 84.155 (3)°T = 296 K
γ = 86.846 (3)°Needle, colourless
V = 477.50 (4) Å30.19 × 0.09 × 0.02 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2330 independent reflections
Radiation source: fine-focus sealed tube1261 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 66
Tmin = 0.941, Tmax = 0.993k = 1111
9379 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.0282P]
where P = (Fo2 + 2Fc2)/3
2330 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C8H9NO4Sγ = 86.846 (3)°
Mr = 215.23V = 477.50 (4) Å3
Triclinic, P1Z = 2
a = 5.2001 (2) ÅMo Kα radiation
b = 8.6120 (4) ŵ = 0.33 mm1
c = 11.2314 (5) ÅT = 296 K
α = 72.675 (3)°0.19 × 0.09 × 0.02 mm
β = 84.155 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2330 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1261 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.993Rint = 0.030
9379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.21 e Å3
2330 reflectionsΔρmin = 0.19 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13958 (10)0.86241 (8)0.36548 (6)0.0718 (3)
O10.7317 (3)0.9547 (2)0.09332 (14)0.0702 (4)
O20.9632 (3)0.7901 (2)0.00272 (17)0.0884 (6)
H21.047 (6)0.868 (4)0.020 (3)0.106*
O30.1286 (4)1.0325 (2)0.3430 (2)0.1179 (8)
O40.0938 (3)0.7780 (2)0.38190 (16)0.0881 (6)
N10.3205 (3)0.8337 (2)0.24607 (18)0.0737 (6)
H10.37680.91970.18990.088*
C10.6130 (4)0.6764 (3)0.14278 (19)0.0580 (6)
C20.3943 (4)0.6848 (3)0.22472 (19)0.0579 (6)
C30.2556 (4)0.5456 (3)0.2809 (2)0.0770 (7)
H30.11020.54980.33550.092*
C40.3279 (5)0.4020 (3)0.2577 (3)0.0826 (7)
H40.23050.31010.29590.099*
C50.5438 (5)0.3919 (3)0.1784 (3)0.0839 (8)
H50.59450.29370.16350.101*
C60.6818 (5)0.5284 (3)0.1222 (2)0.0778 (7)
H60.82720.52190.06820.093*
C70.7712 (4)0.8198 (3)0.07879 (19)0.0617 (6)
C80.3072 (5)0.7722 (4)0.4963 (3)0.0931 (9)
H8A0.47500.81860.48420.140*
H8B0.32600.65730.50790.140*
H8C0.21300.79100.56900.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0519 (3)0.0691 (5)0.0812 (5)0.0032 (3)0.0323 (3)0.0144 (3)
O10.0596 (9)0.0739 (11)0.0679 (10)0.0159 (8)0.0290 (7)0.0160 (8)
O20.0795 (11)0.0919 (14)0.0887 (13)0.0233 (9)0.0491 (9)0.0336 (11)
O30.1275 (16)0.0632 (12)0.1399 (18)0.0009 (10)0.0728 (14)0.0229 (11)
O40.0469 (8)0.1114 (14)0.0933 (13)0.0105 (8)0.0251 (8)0.0194 (10)
N10.0676 (11)0.0592 (12)0.0772 (13)0.0082 (9)0.0391 (10)0.0078 (10)
C10.0512 (11)0.0722 (15)0.0480 (12)0.0099 (10)0.0099 (9)0.0167 (11)
C20.0486 (11)0.0615 (14)0.0558 (13)0.0077 (10)0.0123 (9)0.0099 (10)
C30.0625 (13)0.0719 (17)0.0865 (18)0.0136 (12)0.0254 (12)0.0161 (13)
C40.0825 (16)0.0716 (17)0.0894 (19)0.0235 (13)0.0146 (14)0.0207 (14)
C50.0952 (19)0.0732 (17)0.0866 (18)0.0142 (14)0.0148 (15)0.0340 (14)
C60.0761 (15)0.0870 (19)0.0708 (16)0.0099 (14)0.0227 (13)0.0322 (14)
C70.0510 (11)0.0813 (17)0.0466 (12)0.0093 (11)0.0156 (9)0.0146 (12)
C80.0601 (14)0.132 (2)0.089 (2)0.0001 (15)0.0122 (13)0.0406 (18)
Geometric parameters (Å, º) top
S1—O31.4091 (18)C2—C31.381 (3)
S1—O41.4164 (16)C3—C41.363 (3)
S1—N11.6307 (18)C3—H30.9300
S1—C81.740 (3)C4—C51.376 (3)
O1—C71.223 (3)C4—H40.9300
O2—C71.312 (2)C5—C61.361 (3)
O2—H20.78 (3)C5—H50.9300
N1—C21.400 (3)C6—H60.9300
N1—H10.8600C8—H8A0.9600
C1—C61.384 (3)C8—H8B0.9600
C1—C21.401 (3)C8—H8C0.9600
C1—C71.477 (3)
O3—S1—O4119.14 (12)C3—C4—C5120.6 (2)
O3—S1—N1104.71 (10)C3—C4—H4119.7
O4—S1—N1109.48 (11)C5—C4—H4119.7
O3—S1—C8109.48 (15)C6—C5—C4118.8 (2)
O4—S1—C8107.25 (12)C6—C5—H5120.6
N1—S1—C8106.10 (11)C4—C5—H5120.6
C7—O2—H2107 (2)C5—C6—C1122.2 (2)
C2—N1—S1127.27 (14)C5—C6—H6118.9
C2—N1—H1116.4C1—C6—H6118.9
S1—N1—H1116.4O1—C7—O2121.91 (19)
C6—C1—C2118.5 (2)O1—C7—C1124.62 (18)
C6—C1—C7119.46 (19)O2—C7—C1113.5 (2)
C2—C1—C7122.1 (2)S1—C8—H8A109.5
C3—C2—N1121.92 (19)S1—C8—H8B109.5
C3—C2—C1118.7 (2)H8A—C8—H8B109.5
N1—C2—C1119.34 (18)S1—C8—H8C109.5
C4—C3—C2121.2 (2)H8A—C8—H8C109.5
C4—C3—H3119.4H8B—C8—H8C109.5
C2—C3—H3119.4
O3—S1—N1—C2179.0 (2)C1—C2—C3—C40.1 (4)
O4—S1—N1—C252.2 (2)C2—C3—C4—C50.7 (4)
C8—S1—N1—C263.2 (2)C3—C4—C5—C60.9 (4)
S1—N1—C2—C322.1 (3)C4—C5—C6—C10.4 (4)
S1—N1—C2—C1158.81 (18)C2—C1—C6—C50.3 (4)
C6—C1—C2—C30.4 (3)C7—C1—C6—C5180.0 (2)
C7—C1—C2—C3179.9 (2)C6—C1—C7—O1177.7 (2)
C6—C1—C2—N1179.6 (2)C2—C1—C7—O12.0 (4)
C7—C1—C2—N10.7 (3)C6—C1—C7—O22.3 (3)
N1—C2—C3—C4179.1 (2)C2—C1—C7—O2177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.78 (3)1.89 (3)2.671 (2)172 (4)
N1—H1···O10.862.032.652 (2)128
C4—H4···O3ii0.932.373.235 (3)155
Symmetry codes: (i) x+2, y+2, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC8H9NO4S
Mr215.23
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.2001 (2), 8.6120 (4), 11.2314 (5)
α, β, γ (°)72.675 (3), 84.155 (3), 86.846 (3)
V3)477.50 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.19 × 0.09 × 0.02
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.941, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
9379, 2330, 1261
Rint0.030
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.121, 1.01
No. of reflections2330
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.78 (3)1.89 (3)2.671 (2)172 (4)
N1—H1···O10.86002.03002.652 (2)128.00
C4—H4···O3ii0.93002.37003.235 (3)155.0
Symmetry codes: (i) x+2, y+2, z; (ii) x, y1, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission for a grant to purchase he X-ray diffractometer.

References

First citationArshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283–o2284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEsteve, C. & Bidal, B. (2002). Tetrahedron Lett. 43, 1019–1021.  Web of Science CrossRef CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHanson, P. R., Probst, D. A., Robinson, R. E. & Yau, M. (1999). Tetrahedron Lett. 40, 4761–4763.  Web of Science CrossRef CAS Google Scholar
First citationLee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoree, W. J., Van der Marel, G. A. & Liskamp, R. M. (1991). Tetrahedron Lett. 32, 409–411.  CrossRef CAS Web of Science Google Scholar
First citationRough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., Mc Kerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc. 120, 10994–10995.  Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958–4979.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773–777.  CrossRef CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1775.  CAS Google Scholar
First citationZia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds