organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Piperidinium 4-hydr­­oxy-3-meth­oxy­carbon­yl-1,2-benzo­thia­zin-2-ide 1,1-dioxide

aDepartment of Chemistry, Government College University, Lahore-54000, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan, and cFC College (a Chartered University), Ferozpur Road, Lahore 54600, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 6 September 2009; accepted 7 September 2009; online 12 September 2009)

In the anion of the title compound, C5H12N+·C10H8NO5S, the thia­zine ring adopts a distorted half-chair conformation and the enolic H atom is involved in an intra­molecular O—H⋯O hydrogen bond, forming a six-membered ring. The anions and cations are connected via N—H⋯N and N—H⋯O inter­actions.

Related literature

For the synthesis of related mol­ecules, see: Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26,1771-1775.], 2006[Zia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]); Braun (1923[Braun, J. (1923). Chem. Ber. 56, 2332-2343.]). For the biological activity of 1,2-benzothia­zine1,1-dioxides, see: Bihovsky et al. (2004[Bihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett. 14, 1035-1038.]); Turck et al. (1996[Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79-84.]); Zia-ur-Rehman et al. (2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For related structures, see: Golič & Leban (1987[Golič, L. & Leban, I. (1987). Acta Cryst. C43, 280-282.]).

[Scheme 1]

Experimental

Crystal data
  • C5H12N+·C10H8NO5S

  • Mr = 340.39

  • Monoclinic, P 21 /n

  • a = 12.0423 (5) Å

  • b = 9.1791 (3) Å

  • c = 14.5193 (5) Å

  • β = 90.556 (2)°

  • V = 1604.85 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.39 × 0.33 × 0.29 mm

Data collection
  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.921, Tmax = 0.940

  • 16000 measured reflections

  • 3690 independent reflections

  • 2896 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.103

  • S = 1.03

  • 3690 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4 0.82 1.86 2.577 (2) 145
N1—H1N⋯N2i 0.932 (19) 1.951 (19) 2.881 (2) 175.4 (18)
N1—H2N⋯O2ii 0.87 (2) 1.91 (2) 2.7739 (18) 172.4 (18)
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Owing to their application as non-steroidal anti-inflammatory agents (Turck et al., 1996), considerable attention has been given to synthetic and structural investigations of 1,2-benzothiazine1,1-dioxides and their precursor intermediates (Golič & Leban, 1987). These are known to possess a versatile range of biological activities and have been synthesized continuously since the very first synthesis (Braun, 1923). Among these, Piroxicam (Zia-ur-Rehman et al., 2005), and Meloxicam (Turck et al., 1996) are familiar for their analgesic action and are being used world wide as non-steroidal anti-inflammatory drugs (NSAIDs). Besides, these have also been found to be used for the treatment of rheumatoid arthritis, ankylosing spondylitis, osteoarthrosis and other inflammatory rheumatic and non- rheumatic processes, including onsets and traumatologic lesions. Some of the 3,4-dihydro-1,2-benzothiazine-3-carboxylate 1,1-dioxide α-ketomide and P(2)—P(3) peptide mimetic aldehyde compounds act as potent calpain I inhibitors (Bihovsky et al., 2004) while 1,2-benzothiazin-3-yl-quinazolin-4(3H)-ones possess anti-bacterial properties (Zia-ur-Rehman et al., 2006). As part of a research program synthesizing various bioactive benzothiazines (Zia-ur-Rehman et al., 2005, 2006, 2009), we, herein report the crystal structure of the title compound (Scheme and figure 1). The asymmetric unit contains one piperidinum cation and one 4-hydroxy-3-(methoxycarbonyl)-1,2-benzothiazin-2-ide 1,1-dioxide anion. The piperidinium cation displays a typical chair conformation. The thiazine ring of the anion, involving two double bonds, exhibits a distorted half-chair conformation and the enolic hydrogen on O1 is involved in intramolecular hydrogen bonding giving rise to a six membered hydrogen bond ring (Table 1). Both the ions are linked together through N—H···N and N—H···O interactions. Adjacent asymmetric units are linked through intermolecular N—H···O hydrogen bonds, resulting in zigzag chains lying along the b axis (Figure 2).

Related literature top

For the synthesis of related molecules, see: Zia-ur-Rehman et al. (2005, 2006); Braun (1923). For the biological activity of 1,2-benzothiazine1,1-dioxides, see: Bihovsky et al. (2004); Turck et al. (1996); Zia-ur-Rehman et al. (2009). For related structures, see: Golič & Leban (1987).

Experimental top

A mixture of methyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate-1,1-dioxide (2.693 g; 10.0 mmoles), piperidine (1.02 g, 12.0 mmoles) and toluene (25.0 ml) was heated to reflux for an hour. Solvent and excess piperdine were removed under vacuum and the resulting solids were dried and crystallized from ethanol. Yield: 78%.

Refinement top

All hydrogen atoms were identified in the difference map. Those bonded to O and C were fixed in ideal positions and treated as riding on their parent atoms. The following distances were used: Methyl C—H 0.98 Å. °, aromatic C—H 0.95 Å and O—H 0.84 Å. U(H) was set to 1.2Ueq of the parent atoms or 1.5Ueq for methyl groups. The coordinates of the H atom bonded to N were refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 50% probability level. Hydrogen atoms bonded to C omitted for clarity.
[Figure 2] Fig. 2. Perspective view of the three-dimensional crystal packing showing hydrogen-bonded interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
Piperidinium 4-hydroxy-3-methoxycarbonyl-1,2-benzothiazin-2-ide 1,1-dioxide top
Crystal data top
C5H12N+·C10H8NO5SF(000) = 720
Mr = 340.39Dx = 1.409 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6881 reflections
a = 12.0423 (5) Åθ = 2.6–27.4°
b = 9.1791 (3) ŵ = 0.23 mm1
c = 14.5193 (5) ÅT = 296 K
β = 90.556 (2)°Needle, white yellow
V = 1604.85 (10) Å30.39 × 0.33 × 0.29 mm
Z = 4
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
3690 independent reflections
Radiation source: fine-focus sealed tube2896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker 2007)
h = 1515
Tmin = 0.921, Tmax = 0.940k = 1111
16000 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.5427P]
where P = (Fo2 + 2Fc2)/3
3690 reflections(Δ/σ)max = 0.001
216 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C5H12N+·C10H8NO5SV = 1604.85 (10) Å3
Mr = 340.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.0423 (5) ŵ = 0.23 mm1
b = 9.1791 (3) ÅT = 296 K
c = 14.5193 (5) Å0.39 × 0.33 × 0.29 mm
β = 90.556 (2)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
3690 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2007)
2896 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.940Rint = 0.025
16000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
3690 reflectionsΔρmin = 0.34 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46805 (3)0.74091 (4)0.76725 (3)0.02947 (12)
O10.48950 (11)0.80132 (14)0.85705 (8)0.0461 (3)
O20.38877 (9)0.62124 (13)0.76755 (8)0.0388 (3)
O30.51396 (13)0.69087 (18)0.47854 (8)0.0570 (4)
H30.47060.74290.44970.085*
O40.36167 (13)0.88585 (17)0.45879 (8)0.0598 (4)
O50.30030 (10)1.00194 (13)0.58304 (8)0.0428 (3)
N10.33595 (12)0.12173 (16)0.77625 (10)0.0354 (3)
H2N0.2658 (17)0.113 (2)0.7631 (13)0.042*
H1N0.3719 (16)0.041 (2)0.7515 (13)0.042*
N20.43544 (11)0.86485 (14)0.69844 (9)0.0334 (3)
C10.59021 (13)0.64809 (18)0.62624 (12)0.0358 (4)
C20.67446 (15)0.5623 (2)0.58853 (15)0.0502 (5)
H2A0.67680.54740.52520.060*
C30.75373 (15)0.4998 (2)0.64477 (17)0.0576 (6)
H3A0.80790.44050.61910.069*
C40.75421 (15)0.5235 (2)0.73845 (17)0.0536 (5)
H40.81040.48430.77520.064*
C50.67134 (14)0.60531 (19)0.77759 (14)0.0425 (4)
H50.67110.62160.84080.051*
C60.58827 (12)0.66317 (17)0.72195 (11)0.0322 (3)
C70.50910 (14)0.72383 (19)0.56940 (11)0.0359 (4)
C80.43901 (13)0.82600 (18)0.60482 (10)0.0319 (3)
C90.36534 (14)0.90591 (19)0.54163 (11)0.0366 (4)
C100.22478 (18)1.0821 (2)0.52354 (13)0.0553 (5)
H10A0.17491.01540.49340.083*
H10B0.26641.13420.47810.083*
H10C0.18291.14990.55970.083*
C110.37737 (15)0.25674 (18)0.73166 (12)0.0396 (4)
H11A0.33540.33990.75340.047*
H11B0.36700.24980.66550.047*
C120.49815 (17)0.2779 (2)0.75380 (14)0.0483 (5)
H12A0.52420.36670.72490.058*
H12B0.54040.19710.72920.058*
C130.51701 (19)0.2874 (2)0.85636 (15)0.0592 (6)
H13A0.48150.37430.88000.071*
H13B0.59600.29450.86940.071*
C140.47016 (19)0.1542 (2)0.90404 (13)0.0560 (5)
H14A0.51430.06970.88800.067*
H14B0.47580.16760.97020.067*
C150.35025 (17)0.1258 (2)0.87800 (13)0.0517 (5)
H15A0.32680.03360.90400.062*
H15B0.30380.20200.90330.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0313 (2)0.0288 (2)0.0283 (2)0.00206 (15)0.00296 (14)0.00160 (15)
O10.0628 (8)0.0457 (7)0.0298 (6)0.0067 (6)0.0103 (5)0.0026 (5)
O20.0301 (6)0.0365 (6)0.0498 (7)0.0018 (5)0.0027 (5)0.0071 (5)
O30.0690 (10)0.0707 (10)0.0313 (7)0.0207 (8)0.0058 (6)0.0064 (6)
O40.0770 (10)0.0738 (10)0.0285 (6)0.0239 (8)0.0077 (6)0.0021 (6)
O50.0503 (7)0.0440 (7)0.0339 (6)0.0158 (6)0.0076 (5)0.0031 (5)
N10.0295 (7)0.0335 (8)0.0431 (8)0.0014 (6)0.0020 (6)0.0021 (6)
N20.0425 (7)0.0295 (7)0.0280 (6)0.0070 (6)0.0034 (5)0.0003 (5)
C10.0305 (8)0.0330 (8)0.0439 (9)0.0015 (7)0.0060 (7)0.0023 (7)
C20.0409 (10)0.0493 (11)0.0606 (12)0.0078 (9)0.0150 (9)0.0001 (10)
C30.0320 (9)0.0491 (12)0.0918 (17)0.0096 (9)0.0121 (10)0.0026 (11)
C40.0289 (9)0.0453 (11)0.0863 (16)0.0027 (8)0.0118 (9)0.0105 (11)
C50.0342 (8)0.0358 (9)0.0573 (11)0.0029 (7)0.0120 (8)0.0066 (8)
C60.0258 (7)0.0268 (8)0.0438 (9)0.0035 (6)0.0018 (6)0.0021 (7)
C70.0375 (9)0.0401 (9)0.0301 (8)0.0004 (7)0.0038 (6)0.0003 (7)
C80.0350 (8)0.0322 (8)0.0284 (7)0.0001 (7)0.0011 (6)0.0022 (6)
C90.0417 (9)0.0363 (9)0.0317 (8)0.0004 (8)0.0021 (7)0.0030 (7)
C100.0630 (13)0.0602 (13)0.0426 (10)0.0239 (10)0.0116 (9)0.0095 (9)
C110.0444 (9)0.0312 (9)0.0430 (9)0.0001 (7)0.0060 (7)0.0015 (7)
C120.0467 (10)0.0394 (10)0.0589 (12)0.0109 (8)0.0033 (9)0.0003 (9)
C130.0645 (14)0.0474 (12)0.0653 (13)0.0078 (10)0.0238 (11)0.0101 (10)
C140.0728 (14)0.0560 (13)0.0389 (10)0.0058 (11)0.0160 (9)0.0044 (9)
C150.0611 (12)0.0534 (12)0.0409 (10)0.0075 (10)0.0129 (9)0.0001 (9)
Geometric parameters (Å, º) top
S1—O11.4379 (12)C4—H40.9300
S1—O21.4554 (12)C5—C61.385 (2)
S1—N21.5618 (13)C5—H50.9300
S1—C61.7483 (16)C7—C81.366 (2)
O3—C71.3553 (19)C8—C91.467 (2)
O3—H30.8200C10—H10A0.9600
O4—C91.217 (2)C10—H10B0.9600
O5—C91.327 (2)C10—H10C0.9600
O5—C101.449 (2)C11—C121.499 (3)
N1—C151.486 (2)C11—H11A0.9700
N1—C111.487 (2)C11—H11B0.9700
N1—H2N0.87 (2)C12—C131.507 (3)
N1—H1N0.93 (2)C12—H12A0.9700
N2—C81.4063 (19)C12—H12B0.9700
C1—C61.397 (2)C13—C141.516 (3)
C1—C21.400 (2)C13—H13A0.9700
C1—C71.450 (2)C13—H13B0.9700
C2—C31.375 (3)C14—C151.512 (3)
C2—H2A0.9300C14—H14A0.9700
C3—C41.377 (3)C14—H14B0.9700
C3—H3A0.9300C15—H15A0.9700
C4—C51.376 (3)C15—H15B0.9700
O1—S1—O2113.61 (8)O4—C9—O5122.16 (16)
O1—S1—N2109.94 (7)O4—C9—C8123.95 (16)
O2—S1—N2113.00 (7)O5—C9—C8113.88 (14)
O1—S1—C6110.88 (8)O5—C10—H10A109.5
O2—S1—C6103.81 (7)O5—C10—H10B109.5
N2—S1—C6105.11 (7)H10A—C10—H10B109.5
C7—O3—H3109.5O5—C10—H10C109.5
C9—O5—C10115.92 (14)H10A—C10—H10C109.5
C15—N1—C11112.06 (15)H10B—C10—H10C109.5
C15—N1—H2N108.9 (12)N1—C11—C12110.10 (15)
C11—N1—H2N108.1 (13)N1—C11—H11A109.6
C15—N1—H1N110.7 (11)C12—C11—H11A109.6
C11—N1—H1N109.6 (11)N1—C11—H11B109.6
H2N—N1—H1N107.3 (17)C12—C11—H11B109.6
C8—N2—S1115.08 (11)H11A—C11—H11B108.2
C6—C1—C2117.64 (16)C11—C12—C13110.86 (17)
C6—C1—C7120.06 (14)C11—C12—H12A109.5
C2—C1—C7122.27 (17)C13—C12—H12A109.5
C3—C2—C1120.25 (19)C11—C12—H12B109.5
C3—C2—H2A119.9C13—C12—H12B109.5
C1—C2—H2A119.9H12A—C12—H12B108.1
C2—C3—C4121.11 (18)C12—C13—C14110.59 (16)
C2—C3—H3A119.4C12—C13—H13A109.5
C4—C3—H3A119.4C14—C13—H13A109.5
C5—C4—C3119.85 (18)C12—C13—H13B109.5
C5—C4—H4120.1C14—C13—H13B109.5
C3—C4—H4120.1H13A—C13—H13B108.1
C4—C5—C6119.40 (19)C15—C14—C13112.54 (17)
C4—C5—H5120.3C15—C14—H14A109.1
C6—C5—H5120.3C13—C14—H14A109.1
C5—C6—C1121.54 (16)C15—C14—H14B109.1
C5—C6—S1122.21 (14)C13—C14—H14B109.1
C1—C6—S1115.89 (12)H14A—C14—H14B107.8
O3—C7—C8123.54 (15)N1—C15—C14110.74 (15)
O3—C7—C1114.31 (15)N1—C15—H15A109.5
C8—C7—C1122.03 (15)C14—C15—H15A109.5
C7—C8—N2124.26 (14)N1—C15—H15B109.5
C7—C8—C9118.70 (14)C14—C15—H15B109.5
N2—C8—C9116.99 (14)H15A—C15—H15B108.1
O1—S1—N2—C8165.08 (12)C2—C1—C7—O37.3 (2)
O2—S1—N2—C866.84 (13)C6—C1—C7—C89.0 (3)
C6—S1—N2—C845.69 (13)C2—C1—C7—C8168.87 (17)
C6—C1—C2—C32.0 (3)O3—C7—C8—N2177.84 (16)
C7—C1—C2—C3175.93 (18)C1—C7—C8—N22.0 (3)
C1—C2—C3—C42.0 (3)O3—C7—C8—C90.5 (3)
C2—C3—C4—C53.1 (3)C1—C7—C8—C9175.28 (15)
C3—C4—C5—C60.1 (3)S1—N2—C8—C729.7 (2)
C4—C5—C6—C14.0 (3)S1—N2—C8—C9152.98 (12)
C4—C5—C6—S1168.73 (14)C10—O5—C9—O40.2 (3)
C2—C1—C6—C55.0 (2)C10—O5—C9—C8179.11 (16)
C7—C1—C6—C5172.97 (16)C7—C8—C9—O40.8 (3)
C2—C1—C6—S1168.17 (13)N2—C8—C9—O4178.31 (17)
C7—C1—C6—S113.8 (2)C7—C8—C9—O5179.66 (15)
O1—S1—C6—C528.75 (16)N2—C8—C9—O52.8 (2)
O2—S1—C6—C593.61 (15)C15—N1—C11—C1259.0 (2)
N2—S1—C6—C5147.50 (14)N1—C11—C12—C1358.6 (2)
O1—S1—C6—C1158.11 (12)C11—C12—C13—C1455.4 (2)
O2—S1—C6—C179.53 (13)C12—C13—C14—C1552.5 (2)
N2—S1—C6—C139.36 (14)C11—N1—C15—C1455.5 (2)
C6—C1—C7—O3174.80 (15)C13—C14—C15—N152.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.862.577 (2)145
N1—H1N···N2i0.932 (19)1.951 (19)2.881 (2)175.4 (18)
N1—H2N···O2ii0.87 (2)1.91 (2)2.7739 (18)172.4 (18)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC5H12N+·C10H8NO5S
Mr340.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.0423 (5), 9.1791 (3), 14.5193 (5)
β (°) 90.556 (2)
V3)1604.85 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.39 × 0.33 × 0.29
Data collection
DiffractometerBruker KAPPA APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2007)
Tmin, Tmax0.921, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
16000, 3690, 2896
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.03
No. of reflections3690
No. of parameters216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.86002.577 (2)145
N1—H1N···N2i0.932 (19)1.951 (19)2.881 (2)175.4 (18)
N1—H2N···O2ii0.87 (2)1.91 (2)2.7739 (18)172.4 (18)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to PCSIR Laboratories Complex, Lahore, for the provision of necessary facilities to complete this work.

References

First citationBihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett. 14, 1035–1038.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBraun, J. (1923). Chem. Ber. 56, 2332–2343.  CrossRef Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGolič, L. & Leban, I. (1987). Acta Cryst. C43, 280–282.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79–84.  PubMed Web of Science Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26,1771–1775.  CAS Google Scholar
First citationZia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds