metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(N,N-Di­ethyl­di­thio­carbamato-κ2S,S′)iodido(1,10-phenanthroline-κ2N,N′)copper(II)

aInstitute of Materials Physical Chemistry, Huaqiao University, Quanzhou, Fujian 362021, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: lqfan@hqu.edu.cn

(Received 8 September 2009; accepted 9 September 2009; online 12 September 2009)

The copper(II) atom in the title compound, [Cu(C5H10NS2)I(C12H8N2)], is chelated by the N-heterocycle and the dithio­carbamate anion in a slightly distorted tetragonal coordination. The tetragonal-pyramidal coorination is completed by the iodine atom in the apical position. One ethyl group is disordered over two positions with site occupancies of 0.31 (2) and 0.69 (2).

Related literature

For the crystal structures of other N,N′-chelated dithio­carbamatocopper adducts of N-heterocycles, see: Fan & Wu (2008[Fan, L.-Q. & Wu, J.-H. (2008). Acta Cryst. E64, m639.], 2009[Fan, L.-Q. & Wu, J.-H. (2009). Acta Cryst. E65, m319.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5H10NS2)I(C12H8N2)]

  • Mr = 518.90

  • Monoclinic, P 21 /c

  • a = 15.357 (5) Å

  • b = 9.252 (3) Å

  • c = 14.153 (5) Å

  • β = 103.741 (5)°

  • V = 1953.3 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.593, Tmax = 0.759

  • 14774 measured reflections

  • 4470 independent reflections

  • 3666 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 0.93

  • 4470 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.73 e Å−3

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structures of other N,N'-chelated dithiocarbamatocopper adducts of N-heterocycles, see: Fan & Wu (2008, 2009).

Experimental top

A mixture of copper(II) acetate hydrate (0.08 g, 0.4 mmol), sodium diethyldithiocarbamate trihydrate (0.09 g, 0.4 mmol), 1,10-phenanthroline (0.08 g 0.4 mmol) and sodium iodide dihydrate (0.07 g, 0.4 mmol) was stirred in DMF (15 ml). 2-Propanol was diffused into the solution; crystals were isolated after several days, yielding single crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

One ethyl radical are disordered over two positions with site occupation factors of 0.31 (2):0.69 (2).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of CuI(C12H8N2)(C5H10NS2) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The minor occupied sites of the disordered ethyl chain is not shown.
(N,N-Diethyldithiocarbamato-κ2S,S')iodido(1,10-phenanthroline-κ2N,N')copper(II) top
Crystal data top
[Cu(C5H10NS2)I(C12H8N2)]F(000) = 1020
Mr = 518.90Dx = 1.764 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4020 reflections
a = 15.357 (5) Åθ = 3.1–27.5°
b = 9.252 (3) ŵ = 2.92 mm1
c = 14.153 (5) ÅT = 293 K
β = 103.741 (5)°Prism, black
V = 1953.3 (11) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
4470 independent reflections
Radiation source: fine-focus sealed tube3666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
CrystalClear (Rigaku, 2007)
h = 1519
Tmin = 0.593, Tmax = 0.759k = 1212
14774 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0613P)2 + 3.3876P]
where P = (Fo2 + 2Fc2)/3
4470 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Cu(C5H10NS2)I(C12H8N2)]V = 1953.3 (11) Å3
Mr = 518.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.357 (5) ŵ = 2.92 mm1
b = 9.252 (3) ÅT = 293 K
c = 14.153 (5) Å0.20 × 0.20 × 0.10 mm
β = 103.741 (5)°
Data collection top
Rigaku Mercury
diffractometer
4470 independent reflections
Absorption correction: multi-scan
CrystalClear (Rigaku, 2007)
3666 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.759Rint = 0.033
14774 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 0.93Δρmax = 0.44 e Å3
4470 reflectionsΔρmin = 0.73 e Å3
237 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.28574 (4)0.83518 (6)0.45653 (4)0.04622 (16)
I10.17818 (2)0.58393 (3)0.47531 (2)0.05255 (13)
S10.37150 (9)0.78291 (19)0.34872 (9)0.0680 (4)
S20.42493 (9)0.78293 (18)0.55491 (9)0.0645 (4)
N10.5328 (3)0.6852 (6)0.4466 (3)0.0682 (13)
N20.1835 (2)0.9450 (4)0.3643 (2)0.0418 (8)
N30.2373 (2)0.9449 (4)0.5572 (2)0.0412 (8)
C10.4550 (3)0.7443 (5)0.4495 (3)0.0506 (11)
C20.5523 (8)0.6281 (16)0.3563 (8)0.078 (4)0.69 (2)
H2A0.57860.53270.36920.094*0.69 (2)
H2B0.49640.61800.30750.094*0.69 (2)
C2'0.5643 (15)0.726 (3)0.3480 (16)0.065 (7)0.31 (2)
H2D0.52310.79180.30660.077*0.31 (2)
H2E0.62460.76450.36170.077*0.31 (2)
C3'0.559 (2)0.569 (3)0.305 (2)0.113 (13)0.31 (2)
H3D0.61810.52920.31510.170*0.31 (2)
H3E0.53200.57250.23610.170*0.31 (2)
H3F0.52320.50920.33620.170*0.31 (2)
C30.6108 (13)0.716 (2)0.3191 (10)0.150 (8)0.69 (2)
H3A0.61610.67920.25740.224*0.69 (2)
H3B0.66870.71720.36360.224*0.69 (2)
H3C0.58740.81300.31090.224*0.69 (2)
C40.6012 (3)0.6512 (6)0.5367 (4)0.0620 (13)
H4A0.63460.56640.52570.074*
H4B0.57130.62840.58810.074*
C50.6644 (4)0.7723 (7)0.5687 (5)0.0799 (18)
`H5B0.63130.85860.57440.120*
H5A0.69940.78740.52170.120*
H5C0.70330.74950.63060.120*
C60.1575 (4)0.9422 (5)0.2673 (3)0.0509 (11)
H60.19140.89070.23250.061*
C70.0802 (4)1.0150 (5)0.2165 (3)0.0560 (12)
H70.06291.00930.14900.067*
C80.0309 (3)1.0935 (5)0.2656 (4)0.0518 (11)
H80.02061.14130.23220.062*
C90.0586 (3)1.1019 (4)0.3680 (3)0.0419 (9)
C100.1346 (3)1.0248 (4)0.4133 (3)0.0375 (8)
C110.0123 (3)1.1834 (5)0.4272 (4)0.0520 (11)
H110.03841.23580.39710.062*
C120.0400 (3)1.1862 (5)0.5249 (4)0.0512 (11)
H120.00851.24080.56090.061*
C130.1176 (3)1.1058 (4)0.5741 (3)0.0425 (9)
C140.1639 (3)1.0261 (4)0.5176 (3)0.0383 (9)
C150.1484 (4)1.0955 (5)0.6757 (3)0.0521 (11)
H150.11971.14630.71620.062*
C160.2204 (4)1.0107 (6)0.7144 (3)0.0558 (12)
H160.24031.00120.78150.067*
C170.2640 (3)0.9384 (5)0.6528 (3)0.0489 (11)
H170.31420.88300.68020.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0399 (3)0.0589 (3)0.0391 (3)0.0118 (2)0.0078 (2)0.0028 (2)
I10.0471 (2)0.0563 (2)0.0574 (2)0.00439 (14)0.01878 (15)0.00145 (13)
S10.0460 (7)0.1134 (12)0.0443 (6)0.0092 (7)0.0103 (5)0.0187 (7)
S20.0442 (7)0.1012 (11)0.0461 (6)0.0208 (7)0.0069 (5)0.0011 (6)
N10.040 (2)0.098 (4)0.067 (3)0.007 (2)0.015 (2)0.017 (2)
N20.040 (2)0.0471 (19)0.0377 (18)0.0040 (16)0.0087 (15)0.0007 (14)
N30.0367 (19)0.0460 (19)0.0403 (18)0.0073 (15)0.0080 (15)0.0029 (14)
C10.041 (2)0.059 (3)0.052 (3)0.001 (2)0.013 (2)0.013 (2)
C20.073 (7)0.090 (9)0.076 (7)0.025 (6)0.027 (5)0.016 (7)
C2'0.055 (12)0.071 (15)0.079 (14)0.012 (10)0.038 (10)0.008 (11)
C3'0.18 (3)0.085 (19)0.090 (19)0.055 (19)0.072 (19)0.024 (14)
C30.161 (16)0.207 (19)0.099 (10)0.075 (14)0.066 (10)0.007 (10)
C40.044 (3)0.057 (3)0.086 (4)0.004 (2)0.017 (3)0.002 (3)
C50.063 (4)0.087 (4)0.083 (4)0.018 (3)0.006 (3)0.008 (3)
C60.059 (3)0.055 (3)0.039 (2)0.001 (2)0.012 (2)0.0020 (19)
C70.064 (3)0.057 (3)0.040 (2)0.002 (3)0.002 (2)0.006 (2)
C80.051 (3)0.043 (2)0.056 (3)0.004 (2)0.001 (2)0.010 (2)
C90.039 (2)0.039 (2)0.046 (2)0.0002 (18)0.0063 (18)0.0026 (17)
C100.036 (2)0.0368 (19)0.039 (2)0.0013 (17)0.0071 (16)0.0020 (16)
C110.043 (3)0.044 (2)0.068 (3)0.008 (2)0.012 (2)0.003 (2)
C120.048 (3)0.042 (2)0.064 (3)0.006 (2)0.015 (2)0.008 (2)
C130.039 (2)0.039 (2)0.051 (2)0.0017 (18)0.0134 (19)0.0040 (17)
C140.039 (2)0.0357 (19)0.041 (2)0.0028 (17)0.0105 (17)0.0018 (16)
C150.058 (3)0.056 (3)0.047 (2)0.002 (2)0.021 (2)0.011 (2)
C160.066 (3)0.064 (3)0.036 (2)0.001 (3)0.011 (2)0.004 (2)
C170.052 (3)0.058 (3)0.035 (2)0.008 (2)0.0066 (19)0.0001 (18)
Geometric parameters (Å, º) top
Cu1—N32.030 (4)C4—C51.481 (8)
Cu1—N22.057 (3)C4—H4A0.9700
Cu1—S12.2916 (15)C4—H4B0.9700
Cu1—S22.3082 (14)C5—`H5B0.9600
Cu1—I12.9002 (10)C5—H5A0.9600
S1—C11.714 (5)C5—H5C0.9600
S2—C11.701 (5)C6—C71.405 (7)
N1—C11.324 (6)C6—H60.9300
N1—C21.477 (12)C7—C81.354 (7)
N1—C41.481 (7)C7—H70.9300
N1—C2'1.62 (2)C8—C91.412 (6)
N2—C61.335 (5)C8—H80.9300
N2—C101.355 (5)C9—C101.388 (6)
N3—C171.319 (5)C9—C111.435 (6)
N3—C141.359 (5)C10—C141.438 (5)
C2—C31.41 (2)C11—C121.347 (7)
C2—H2A0.9700C11—H110.9300
C2—H2B0.9700C12—C131.438 (6)
C2'—C3'1.57 (4)C12—H120.9300
C2'—H2D0.9700C13—C141.400 (6)
C2'—H2E0.9700C13—C151.406 (6)
C3'—H3D0.9600C15—C161.360 (7)
C3'—H3E0.9600C15—H150.9300
C3'—H3F0.9600C16—C171.390 (6)
C3—H3A0.9600C16—H160.9300
C3—H3B0.9600C17—H170.9300
C3—H3C0.9600
N3—Cu1—N281.17 (14)H3B—C3—H3C109.5
N3—Cu1—S1159.66 (12)N1—C4—C5112.4 (5)
N2—Cu1—S198.89 (11)N1—C4—H4A109.1
N3—Cu1—S297.04 (11)C5—C4—H4A109.1
N2—Cu1—S2160.83 (11)N1—C4—H4B109.1
S1—Cu1—S276.18 (5)C5—C4—H4B109.1
N3—Cu1—I191.42 (11)H4A—C4—H4B107.9
N2—Cu1—I195.08 (11)C4—C5—`H5B109.5
S1—Cu1—I1108.77 (5)C4—C5—H5A109.5
S2—Cu1—I1104.06 (5)`H5B—C5—H5A109.5
C1—S1—Cu185.68 (16)C4—C5—H5C109.5
C1—S2—Cu185.43 (17)`H5B—C5—H5C109.5
C1—N1—C2123.0 (6)H5A—C5—H5C109.5
C1—N1—C4121.4 (4)N2—C6—C7121.8 (5)
C2—N1—C4114.9 (6)N2—C6—H6119.1
C1—N1—C2'112.7 (9)C7—C6—H6119.1
C2—N1—C2'34.6 (8)C8—C7—C6120.2 (4)
C4—N1—C2'119.6 (9)C8—C7—H7119.9
C6—N2—C10118.0 (4)C6—C7—H7119.9
C6—N2—Cu1129.8 (3)C7—C8—C9119.1 (4)
C10—N2—Cu1112.1 (3)C7—C8—H8120.4
C17—N3—C14118.3 (4)C9—C8—H8120.4
C17—N3—Cu1128.4 (3)C10—C9—C8117.4 (4)
C14—N3—Cu1113.1 (3)C10—C9—C11118.7 (4)
N1—C1—S2123.3 (4)C8—C9—C11123.9 (4)
N1—C1—S1124.2 (4)N2—C10—C9123.4 (4)
S2—C1—S1112.4 (3)N2—C10—C14117.0 (4)
C3—C2—N1113.3 (14)C9—C10—C14119.6 (4)
C3—C2—H2A108.9C12—C11—C9122.0 (4)
N1—C2—H2A108.9C12—C11—H11119.0
C3—C2—H2B108.9C9—C11—H11119.0
N1—C2—H2B108.9C11—C12—C13120.7 (4)
H2A—C2—H2B107.7C11—C12—H12119.7
C3'—C2'—N197 (2)C13—C12—H12119.7
C3'—C2'—H2D112.3C14—C13—C15117.1 (4)
N1—C2'—H2D112.3C14—C13—C12118.1 (4)
C3'—C2'—H2E112.3C15—C13—C12124.7 (4)
N1—C2'—H2E112.3N3—C14—C13122.6 (4)
H2D—C2'—H2E109.9N3—C14—C10116.5 (4)
C2'—C3'—H3D109.5C13—C14—C10120.9 (4)
C2'—C3'—H3E109.5C16—C15—C13119.6 (4)
H3D—C3'—H3E109.5C16—C15—H15120.2
C2'—C3'—H3F109.5C13—C15—H15120.2
H3D—C3'—H3F109.5C15—C16—C17119.5 (4)
H3E—C3'—H3F109.5C15—C16—H16120.3
C2—C3—H3A109.5C17—C16—H16120.3
C2—C3—H3B109.5N3—C17—C16122.9 (4)
H3A—C3—H3B109.5N3—C17—H17118.6
C2—C3—H3C109.5C16—C17—H17118.6
H3A—C3—H3C109.5
N3—Cu1—S1—C176.2 (4)C1—N1—C4—C590.7 (7)
N2—Cu1—S1—C1164.8 (2)C2—N1—C4—C598.3 (9)
S2—Cu1—S1—C13.66 (18)C2'—N1—C4—C559.5 (13)
I1—Cu1—S1—C196.74 (18)C10—N2—C6—C72.1 (7)
N3—Cu1—S2—C1164.2 (2)Cu1—N2—C6—C7174.0 (4)
N2—Cu1—S2—C180.8 (4)N2—C6—C7—C81.5 (8)
S1—Cu1—S2—C13.69 (18)C6—C7—C8—C90.5 (8)
I1—Cu1—S2—C1102.57 (18)C7—C8—C9—C101.7 (7)
N3—Cu1—N2—C6179.5 (4)C7—C8—C9—C11179.1 (5)
S1—Cu1—N2—C621.1 (4)C6—N2—C10—C90.8 (6)
S2—Cu1—N2—C694.5 (5)Cu1—N2—C10—C9175.9 (3)
I1—Cu1—N2—C688.8 (4)C6—N2—C10—C14180.0 (4)
N3—Cu1—N2—C103.2 (3)Cu1—N2—C10—C143.2 (5)
S1—Cu1—N2—C10162.6 (3)C8—C9—C10—N21.1 (6)
S2—Cu1—N2—C1089.2 (4)C11—C9—C10—N2179.7 (4)
I1—Cu1—N2—C1087.5 (3)C8—C9—C10—C14178.1 (4)
N2—Cu1—N3—C17177.5 (4)C11—C9—C10—C141.2 (6)
S1—Cu1—N3—C1790.7 (5)C10—C9—C11—C120.5 (7)
S2—Cu1—N3—C1721.7 (4)C8—C9—C11—C12178.7 (5)
I1—Cu1—N3—C1782.6 (4)C9—C11—C12—C130.5 (7)
N2—Cu1—N3—C142.6 (3)C11—C12—C13—C140.8 (7)
S1—Cu1—N3—C1494.4 (4)C11—C12—C13—C15176.1 (5)
S2—Cu1—N3—C14163.3 (3)C17—N3—C14—C131.8 (6)
I1—Cu1—N3—C1492.3 (3)Cu1—N3—C14—C13177.3 (3)
C2—N1—C1—S2168.7 (8)C17—N3—C14—C10177.2 (4)
C4—N1—C1—S21.5 (8)Cu1—N3—C14—C101.7 (5)
C2'—N1—C1—S2153.6 (11)C15—C13—C14—N31.9 (6)
C2—N1—C1—S18.1 (10)C12—C13—C14—N3179.0 (4)
C4—N1—C1—S1178.4 (4)C15—C13—C14—C10177.0 (4)
C2'—N1—C1—S129.5 (12)C12—C13—C14—C100.1 (6)
Cu1—S2—C1—N1172.0 (5)N2—C10—C14—N31.1 (5)
Cu1—S2—C1—S15.2 (3)C9—C10—C14—N3178.1 (4)
Cu1—S1—C1—N1172.0 (5)N2—C10—C14—C13179.9 (4)
Cu1—S1—C1—S25.2 (3)C9—C10—C14—C130.9 (6)
C1—N1—C2—C3106.4 (13)C14—C13—C15—C160.1 (7)
C4—N1—C2—C382.7 (14)C12—C13—C15—C16177.0 (5)
C2'—N1—C2—C323.9 (18)C13—C15—C16—C171.7 (7)
C1—N1—C2'—C3'114.7 (15)C14—N3—C17—C160.1 (7)
C2—N1—C2'—C3'1.0 (16)Cu1—N3—C17—C16174.6 (4)
C4—N1—C2'—C3'92.7 (17)C15—C16—C17—N31.8 (8)

Experimental details

Crystal data
Chemical formula[Cu(C5H10NS2)I(C12H8N2)]
Mr518.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.357 (5), 9.252 (3), 14.153 (5)
β (°) 103.741 (5)
V3)1953.3 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.92
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
CrystalClear (Rigaku, 2007)
Tmin, Tmax0.593, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
14774, 4470, 3666
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 0.93
No. of reflections4470
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.73

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

This work was supported by the Young Talent Fund of Fujian Province (No. 2007 F3060).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFan, L.-Q. & Wu, J.-H. (2008). Acta Cryst. E64, m639.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFan, L.-Q. & Wu, J.-H. (2009). Acta Cryst. E65, m319.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds