organic compounds
2-(Dimethylaminomethyl)phenyl phenyl telluride
aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: chhbsia@chem.iitb.ac.in
The title compound, C15H17NTe, is a heteroleptic Te, N-bidentate ligand having a short Te⋯N contact [2.8079 (16) Å] involving a secondary bonding interaction between the amino N and TeII atoms. The Te—C bond [2.136 (2) Å] trans to the amino group is slightly elongated compared to the other Te—C bond [2.1242 (18) Å] due to the hypervalent interaction. The bond angle for the trans N—Te—C atoms [164.92 (6)°] deviates significantly from linearity.
Related literature
For Heck and cross-coupling reactions, see: Cella et al. (2006); Nishibayashi et al. (1996a,b); Zeni & Comasseto (1999); Zeni et al. (2001). For intramolecularly coordinated see: Detty et al. (1995); Drake et al. (2001); Engman et al. (2004); Kaur et al. (1995, 2009); Menon et al. (1996); Panda et al. (1999); Singh et al. (1990). For van der Waals and covalent radii, see: Bondi (1964); Cordero et al. (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809038161/bt5068sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809038161/bt5068Isup2.hkl
The title compound was prepared by the reported procedure (Kaur et al. 1995). A
of the compound was made in warm n-pentane and allowed to evaporate slowly at room temperature to grow crystals suitable for diffraction.H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances ranging from 0.95 to 0.99 Å and Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for CH3 H atoms].
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C15H17NTe | F(000) = 664 |
Mr = 338.90 | Dx = 1.572 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8619 reflections |
a = 8.5736 (3) Å | θ = 4.9–32.4° |
b = 13.2472 (5) Å | µ = 2.06 mm−1 |
c = 12.6719 (4) Å | T = 110 K |
β = 95.933 (3)° | Prism, colorless |
V = 1431.52 (9) Å3 | 0.49 × 0.41 × 0.27 mm |
Z = 4 |
Oxford Diffraction Gemini R CCD diffractometer | 4836 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2926 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 32.4°, θmin = 4.9° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −18→19 |
Tmin = 0.728, Tmax = 1.000 | l = −18→18 |
20642 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0289P)2] where P = (Fo2 + 2Fc2)/3 |
4836 reflections | (Δ/σ)max = 0.001 |
156 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
C15H17NTe | V = 1431.52 (9) Å3 |
Mr = 338.90 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.5736 (3) Å | µ = 2.06 mm−1 |
b = 13.2472 (5) Å | T = 110 K |
c = 12.6719 (4) Å | 0.49 × 0.41 × 0.27 mm |
β = 95.933 (3)° |
Oxford Diffraction Gemini R CCD diffractometer | 4836 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 2926 reflections with I > 2σ(I) |
Tmin = 0.728, Tmax = 1.000 | Rint = 0.028 |
20642 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 0 restraints |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.58 e Å−3 |
4836 reflections | Δρmin = −0.47 e Å−3 |
156 parameters |
Experimental. CrysAlis RED, (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Te | 0.886656 (14) | 0.206826 (9) | 0.327530 (10) | 0.04605 (6) | |
C7 | 1.0873 (2) | −0.00329 (16) | 0.33777 (15) | 0.0462 (5) | |
H7A | 1.1484 | 0.0230 | 0.4025 | 0.055* | |
H7B | 1.1349 | −0.0681 | 0.3190 | 0.055* | |
C1 | 0.8142 (2) | 0.05794 (13) | 0.36112 (13) | 0.0373 (4) | |
C2 | 0.6624 (2) | 0.03853 (16) | 0.38466 (14) | 0.0460 (4) | |
H2A | 0.5888 | 0.0922 | 0.3840 | 0.055* | |
C3 | 0.6175 (2) | −0.05790 (16) | 0.40897 (16) | 0.0533 (5) | |
H3A | 0.5134 | −0.0704 | 0.4249 | 0.064* | |
C4 | 0.7225 (3) | −0.13543 (17) | 0.41016 (16) | 0.0566 (5) | |
H4A | 0.6923 | −0.2016 | 0.4287 | 0.068* | |
C5 | 0.8725 (3) | −0.11769 (15) | 0.38443 (15) | 0.0497 (5) | |
H5A | 0.9435 | −0.1726 | 0.3831 | 0.060* | |
C6 | 0.9219 (2) | −0.02150 (14) | 0.36041 (14) | 0.0395 (4) | |
N | 1.09600 (18) | 0.06793 (12) | 0.25179 (13) | 0.0470 (4) | |
C8 | 1.0372 (3) | 0.0248 (2) | 0.14988 (17) | 0.0711 (7) | |
H8A | 0.9302 | −0.0002 | 0.1533 | 0.107* | |
H8B | 1.1050 | −0.0311 | 0.1329 | 0.107* | |
H8C | 1.0366 | 0.0767 | 0.0947 | 0.107* | |
C9 | 1.2542 (3) | 0.1090 (2) | 0.2514 (2) | 0.0739 (7) | |
H9A | 1.2852 | 0.1426 | 0.3192 | 0.111* | |
H9B | 1.2559 | 0.1579 | 0.1934 | 0.111* | |
H9C | 1.3277 | 0.0540 | 0.2412 | 0.111* | |
C10 | 0.6957 (2) | 0.27717 (13) | 0.39468 (15) | 0.0433 (4) | |
C11 | 0.5679 (3) | 0.31290 (16) | 0.32958 (17) | 0.0554 (5) | |
H11A | 0.5633 | 0.3032 | 0.2550 | 0.066* | |
C12 | 0.4467 (3) | 0.36259 (18) | 0.37197 (19) | 0.0631 (6) | |
H12A | 0.3587 | 0.3856 | 0.3266 | 0.076* | |
C13 | 0.4534 (3) | 0.37856 (17) | 0.47833 (19) | 0.0609 (6) | |
H13A | 0.3709 | 0.4136 | 0.5071 | 0.073* | |
C14 | 0.5789 (3) | 0.34409 (18) | 0.54402 (18) | 0.0627 (6) | |
H14A | 0.5827 | 0.3548 | 0.6184 | 0.075* | |
C15 | 0.6989 (3) | 0.29428 (15) | 0.50326 (16) | 0.0536 (5) | |
H15B | 0.7856 | 0.2710 | 0.5497 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Te | 0.04845 (9) | 0.04144 (8) | 0.04904 (9) | 0.00098 (6) | 0.00871 (6) | 0.00703 (6) |
C7 | 0.0416 (10) | 0.0500 (12) | 0.0469 (11) | 0.0059 (9) | 0.0049 (8) | 0.0024 (8) |
C1 | 0.0395 (9) | 0.0410 (10) | 0.0314 (8) | −0.0007 (8) | 0.0031 (7) | −0.0031 (7) |
C2 | 0.0416 (10) | 0.0501 (12) | 0.0468 (10) | 0.0001 (9) | 0.0069 (8) | −0.0066 (9) |
C3 | 0.0495 (11) | 0.0563 (14) | 0.0564 (12) | −0.0160 (10) | 0.0169 (9) | −0.0145 (10) |
C4 | 0.0731 (15) | 0.0465 (13) | 0.0521 (12) | −0.0174 (11) | 0.0154 (10) | −0.0081 (9) |
C5 | 0.0640 (13) | 0.0393 (11) | 0.0463 (11) | 0.0035 (10) | 0.0080 (9) | −0.0023 (9) |
C6 | 0.0424 (10) | 0.0416 (10) | 0.0341 (9) | 0.0011 (8) | 0.0025 (7) | 0.0013 (8) |
N | 0.0431 (9) | 0.0491 (10) | 0.0503 (9) | 0.0027 (7) | 0.0128 (7) | 0.0049 (8) |
C8 | 0.0833 (16) | 0.0851 (19) | 0.0466 (13) | 0.0158 (15) | 0.0149 (11) | 0.0025 (12) |
C9 | 0.0555 (13) | 0.0756 (18) | 0.0948 (18) | −0.0037 (12) | 0.0279 (12) | 0.0159 (14) |
C10 | 0.0504 (11) | 0.0327 (10) | 0.0469 (11) | −0.0005 (8) | 0.0049 (9) | 0.0028 (8) |
C11 | 0.0605 (13) | 0.0542 (14) | 0.0499 (12) | 0.0097 (10) | −0.0022 (10) | −0.0012 (9) |
C12 | 0.0563 (13) | 0.0605 (15) | 0.0712 (15) | 0.0165 (11) | 0.0005 (11) | 0.0013 (12) |
C13 | 0.0652 (14) | 0.0455 (12) | 0.0755 (15) | 0.0070 (11) | 0.0238 (12) | 0.0006 (11) |
C14 | 0.0827 (16) | 0.0591 (15) | 0.0486 (12) | 0.0050 (12) | 0.0171 (12) | −0.0042 (10) |
C15 | 0.0603 (13) | 0.0534 (13) | 0.0462 (11) | 0.0050 (10) | 0.0006 (9) | 0.0030 (9) |
Te—C1 | 2.1242 (18) | N—C9 | 1.462 (3) |
Te—C10 | 2.136 (2) | C8—H8A | 0.9800 |
Te—N | 2.8079 (16) | C8—H8B | 0.9800 |
C7—N | 1.449 (2) | C8—H8C | 0.9800 |
C7—C6 | 1.495 (2) | C9—H9A | 0.9800 |
C7—H7A | 0.9900 | C9—H9B | 0.9800 |
C7—H7B | 0.9900 | C9—H9C | 0.9800 |
C1—C2 | 1.389 (3) | C10—C11 | 1.385 (3) |
C1—C6 | 1.401 (3) | C10—C15 | 1.392 (3) |
C2—C3 | 1.378 (3) | C11—C12 | 1.384 (3) |
C2—H2A | 0.9500 | C11—H11A | 0.9500 |
C3—C4 | 1.365 (3) | C12—C13 | 1.360 (3) |
C3—H3A | 0.9500 | C12—H12A | 0.9500 |
C4—C5 | 1.379 (3) | C13—C14 | 1.369 (3) |
C4—H4A | 0.9500 | C13—H13A | 0.9500 |
C5—C6 | 1.387 (3) | C14—C15 | 1.368 (3) |
C5—H5A | 0.9500 | C14—H14A | 0.9500 |
N—C8 | 1.454 (3) | C15—H15B | 0.9500 |
C1—Te—C10 | 94.19 (7) | C9—N—Te | 112.55 (14) |
C1—Te—N | 70.77 (6) | N—C8—H8A | 109.5 |
C10—Te—N | 164.92 (6) | N—C8—H8B | 109.5 |
N—C7—C6 | 111.92 (14) | H8A—C8—H8B | 109.5 |
N—C7—H7A | 109.2 | N—C8—H8C | 109.5 |
C6—C7—H7A | 109.2 | H8A—C8—H8C | 109.5 |
N—C7—H7B | 109.2 | H8B—C8—H8C | 109.5 |
C6—C7—H7B | 109.2 | N—C9—H9A | 109.5 |
H7A—C7—H7B | 107.9 | N—C9—H9B | 109.5 |
C2—C1—C6 | 119.70 (17) | H9A—C9—H9B | 109.5 |
C2—C1—Te | 120.99 (14) | N—C9—H9C | 109.5 |
C6—C1—Te | 119.30 (13) | H9A—C9—H9C | 109.5 |
C3—C2—C1 | 120.59 (18) | H9B—C9—H9C | 109.5 |
C3—C2—H2A | 119.7 | C11—C10—C15 | 117.82 (19) |
C1—C2—H2A | 119.7 | C11—C10—Te | 120.25 (15) |
C4—C3—C2 | 120.08 (19) | C15—C10—Te | 121.81 (14) |
C4—C3—H3A | 120.0 | C12—C11—C10 | 120.7 (2) |
C2—C3—H3A | 120.0 | C12—C11—H11A | 119.6 |
C3—C4—C5 | 119.9 (2) | C10—C11—H11A | 119.6 |
C3—C4—H4A | 120.0 | C13—C12—C11 | 120.2 (2) |
C5—C4—H4A | 120.0 | C13—C12—H12A | 119.9 |
C4—C5—C6 | 121.48 (19) | C11—C12—H12A | 119.9 |
C4—C5—H5A | 119.3 | C12—C13—C14 | 120.0 (2) |
C6—C5—H5A | 119.3 | C12—C13—H13A | 120.0 |
C5—C6—C1 | 118.17 (17) | C14—C13—H13A | 120.0 |
C5—C6—C7 | 120.53 (17) | C15—C14—C13 | 120.4 (2) |
C1—C6—C7 | 121.27 (17) | C15—C14—H14A | 119.8 |
C7—N—C8 | 111.84 (17) | C13—C14—H14A | 119.8 |
C7—N—C9 | 111.41 (16) | C14—C15—C10 | 120.87 (19) |
C8—N—C9 | 112.33 (17) | C14—C15—H15B | 119.6 |
C7—N—Te | 94.88 (10) | C10—C15—H15B | 119.6 |
C8—N—Te | 112.69 (13) | ||
C10—Te—C1—C2 | 17.26 (15) | C6—C7—N—Te | 45.84 (15) |
N—Te—C1—C2 | −161.59 (15) | C1—Te—N—C7 | −35.48 (10) |
C10—Te—C1—C6 | −162.12 (13) | C10—Te—N—C7 | −39.9 (3) |
N—Te—C1—C6 | 19.02 (12) | C1—Te—N—C8 | 80.65 (15) |
C6—C1—C2—C3 | 1.0 (3) | C10—Te—N—C8 | 76.3 (3) |
Te—C1—C2—C3 | −178.36 (13) | C1—Te—N—C9 | −151.08 (15) |
C1—C2—C3—C4 | 0.0 (3) | C10—Te—N—C9 | −155.5 (2) |
C2—C3—C4—C5 | −1.6 (3) | C1—Te—C10—C11 | −101.37 (16) |
C3—C4—C5—C6 | 2.2 (3) | N—Te—C10—C11 | −97.2 (3) |
C4—C5—C6—C1 | −1.1 (3) | C1—Te—C10—C15 | 82.60 (16) |
C4—C5—C6—C7 | 177.09 (17) | N—Te—C10—C15 | 86.8 (3) |
C2—C1—C6—C5 | −0.5 (3) | C15—C10—C11—C12 | −0.9 (3) |
Te—C1—C6—C5 | 178.88 (13) | Te—C10—C11—C12 | −177.11 (17) |
C2—C1—C6—C7 | −178.66 (16) | C10—C11—C12—C13 | 1.2 (4) |
Te—C1—C6—C7 | 0.7 (2) | C11—C12—C13—C14 | −1.0 (4) |
N—C7—C6—C5 | 140.26 (18) | C12—C13—C14—C15 | 0.6 (4) |
N—C7—C6—C1 | −41.6 (2) | C13—C14—C15—C10 | −0.3 (4) |
C6—C7—N—C8 | −71.0 (2) | C11—C10—C15—C14 | 0.5 (3) |
C6—C7—N—C9 | 162.38 (17) | Te—C10—C15—C14 | 176.60 (17) |
Experimental details
Crystal data | |
Chemical formula | C15H17NTe |
Mr | 338.90 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 110 |
a, b, c (Å) | 8.5736 (3), 13.2472 (5), 12.6719 (4) |
β (°) | 95.933 (3) |
V (Å3) | 1431.52 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.06 |
Crystal size (mm) | 0.49 × 0.41 × 0.27 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.728, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20642, 4836, 2926 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.754 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.058, 0.97 |
No. of reflections | 4836 |
No. of parameters | 156 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.47 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Te—C1 | 2.1242 (18) | Te—N | 2.8079 (16) |
Te—C10 | 2.136 (2) | ||
C1—Te—C10 | 94.19 (7) | C10—Te—N | 164.92 (6) |
C1—Te—N | 70.77 (6) |
Acknowledgements
HSB is grateful to the Department of Science and Technology (DST) for the award of a Ramanna Fellowship. TC is grateful to the CSIR for a JRF/SRF fellowship. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.
References
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Cella, R., Cunha, R. L. O., Reis, A. E. S., Pimenta, D. C., Klitzke, C. F. & Stefani, H. A. (2006). J. Org. Chem. 71, 244–250. Web of Science CrossRef PubMed CAS Google Scholar
Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838. Web of Science CrossRef Google Scholar
Detty, R. M., Friedman, A. E. & McMillan, M. (1995). Organometallics, 14, 1442–1449. CrossRef CAS Web of Science Google Scholar
Drake, J. E., Hursthouse, M. B., Kulcsar, M., Light, M. E. & Silvestru, A. (2001). J. Organomet. Chem. 623, 153–160. CAS Google Scholar
Engman, L., Wojtoń, A., Oleksyn, B. J. & Śliwiński, J. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 285–292. Web of Science CSD CrossRef CAS Google Scholar
Kaur, R., Menon, S. C., Panda, A., Singh, H. B., Patel, R. P. & Butcher, R. J. (2009). Organometallics, 14, 2363–2371. Web of Science CSD CrossRef Google Scholar
Kaur, R., Singh, H. B. & Butcher, R. J. (1995). Organometallics, 14, 4745–4763. CSD CrossRef Web of Science Google Scholar
Menon, S. C., Singh, H. B., Jasinski, J. M., Jasinski, J. P. & Butcher, R. J. (1996). Organometallics, 15, 1707–1712. CSD CrossRef CAS Web of Science Google Scholar
Nishibayashi, Y., Cho, C. S., Ohe, K. & Uemura, S. (1996a). J. Organomet. Chem. 526, 335–339. CrossRef CAS Web of Science Google Scholar
Nishibayashi, Y., Cho, C. S. & Uemura, S. (1996b). J. Organomet. Chem. 507, 197–200. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Panda, A., Mugesh, G., Singh, H. B. & Butcher, R. J. (1999). Organometallics, 18, 1986–1993. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, H. B., Sudha, N., West, A. A. & Hamor, T. A. (1990). J. Chem. Soc. Dalton Trans. pp. 907–913. CSD CrossRef Web of Science Google Scholar
Zeni, C. & Comasseto, J. V. (1999). Tetrahedron Lett. 40, 4619–4622. Web of Science CrossRef CAS Google Scholar
Zeni, G., Menezes, P. H., Moro, A. V., Braga, A. L., Silveira, C. C. & Stefani, H. A. (2001). Synlett, 9, 1473–1475. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF.
Hydrid Te, N ligands with soft Te and hard N are of current interest due to their intramolecular coordination as the trans bond is activated and easily cleaved by metals (Kaur et al. 2009). Thus incorporation of soft tellurium and hard nitrogen into mixed donor Te, N bidentate ligands makes them interesting and promising as candidates for catalysts in combination with soft transition metals like Pd and the Rh group metals. Their coordination properties can be varied by changing the nitrogen function. Thus by introduction of a secondary bonding interaction which weakens the bond trans to Te in ortho-coordinated or suitably arranged substrates, the catalytic transformation of tellurides as substrates in Heck-type (Nishibayashi et al. 1996a; Nishibayashi et al. 1996b) and cross coupling (Zeni & Comasseto, 1999; Zeni et al. 2001; Cella et al. 2006) reactions and their coordination properties (Kaur et al. 2009) can be influenced. Our group (Singh et al. 1990; Kaur et al. 1995; Menon et al. 1996; Panda et al. 1999) as well as others (Detty et al. 1995; Drake et al. 2001, Engman et al. 2004) have been involved in the synthesis and studies of such intramolecularly coordinated organotellurides. The title compound, but not the structure, has been reported previously by Detty and co-workers as well as by our group (Kaur et al. 1995).
In the structure of the title compound, considering the bonding geometry around the Te as V-shaped with a longer intramolecular Te···N secondary interaction, a pseudo five-membered puckered ring can be envisioned. The Te···N distance of 2.8079 (16) Å is much greater than the sum of their covalent radii (2.11 Å; Cordero et al. 2008) but less than the sum of their van der Waal radii (3.61 Å; Bondi, 1964) and greater than the corresponding distance in similar compounds viz., 2-NMe2CH2C6H4TeCl (2.362 (3) Å; Engman et al. 2004), 2-NMe2CH2C6H4TeI (2.366 (4) Å; Kaur et al. 1995) or 8-(dimethylamino)-1-naphthyl phenyl telluride (2.713 (1) Å; Menon et al. 1996). Due to this hypervalent intramolecular Te···N contact the Te—C bond (2.137 (2) Å) trans to the amino group gets slightly elongated compared to the other Te—C bond (2.1249 (18) Å). The bond angle for the trans N—Te—C atoms (164.92 (6)°) deviates significantly from linearity.