organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2562-o2563

2-(Di­methyl­amino­meth­yl)phenyl phenyl telluride

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: chhbsia@chem.iitb.ac.in

(Received 19 September 2009; accepted 21 September 2009; online 26 September 2009)

The title compound, C15H17NTe, is a heteroleptic Te, N-bidentate ligand having a short Te⋯N contact [2.8079 (16) Å] involving a secondary bonding inter­action between the amino N and TeII atoms. The Te—C bond [2.136 (2) Å] trans to the amino group is slightly elongated compared to the other Te—C bond [2.1242 (18) Å] due to the hypervalent inter­action. The bond angle for the trans N—Te—C atoms [164.92 (6)°] deviates significantly from linearity.

Related literature

For Heck and cross-coupling reactions, see: Cella et al. (2006[Cella, R., Cunha, R. L. O., Reis, A. E. S., Pimenta, D. C., Klitzke, C. F. & Stefani, H. A. (2006). J. Org. Chem. 71, 244-250.]); Nishibayashi et al. (1996a[Nishibayashi, Y., Cho, C. S., Ohe, K. & Uemura, S. (1996a). J. Organomet. Chem. 526, 335-339.],b[Nishibayashi, Y., Cho, C. S. & Uemura, S. (1996b). J. Organomet. Chem. 507, 197-200.]); Zeni & Comasseto (1999[Zeni, C. & Comasseto, J. V. (1999). Tetrahedron Lett. 40, 4619-4622.]); Zeni et al. (2001[Zeni, G., Menezes, P. H., Moro, A. V., Braga, A. L., Silveira, C. C. & Stefani, H. A. (2001). Synlett, 9, 1473-1475.]). For intra­molecularly coordinated tellurides, see: Detty et al. (1995[Detty, R. M., Friedman, A. E. & McMillan, M. (1995). Organometallics, 14, 1442-1449.]); Drake et al. (2001[Drake, J. E., Hursthouse, M. B., Kulcsar, M., Light, M. E. & Silvestru, A. (2001). J. Organomet. Chem. 623, 153-160.]); Engman et al. (2004[Engman, L., Wojtoń, A., Oleksyn, B. J. & Śliwiński, J. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 285-292.]); Kaur et al. (1995[Kaur, R., Singh, H. B. & Butcher, R. J. (1995). Organometallics, 14, 4745-4763.], 2009[Kaur, R., Menon, S. C., Panda, A., Singh, H. B., Patel, R. P. & Butcher, R. J. (2009). Organometallics, 14, 2363-2371.]); Menon et al. (1996[Menon, S. C., Singh, H. B., Jasinski, J. M., Jasinski, J. P. & Butcher, R. J. (1996). Organometallics, 15, 1707-1712.]); Panda et al. (1999[Panda, A., Mugesh, G., Singh, H. B. & Butcher, R. J. (1999). Organometallics, 18, 1986-1993.]); Singh et al. (1990[Singh, H. B., Sudha, N., West, A. A. & Hamor, T. A. (1990). J. Chem. Soc. Dalton Trans. pp. 907-913.]). For van der Waals and covalent radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]); Cordero et al. (2008[Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832-2838.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NTe

  • Mr = 338.90

  • Monoclinic, P 21 /c

  • a = 8.5736 (3) Å

  • b = 13.2472 (5) Å

  • c = 12.6719 (4) Å

  • β = 95.933 (3)°

  • V = 1431.52 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 110 K

  • 0.49 × 0.41 × 0.27 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.728, Tmax = 1.000

  • 20642 measured reflections

  • 4836 independent reflections

  • 2926 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.058

  • S = 0.97

  • 4836 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected geometric parameters (Å, °)

Te—C1 2.1242 (18)
Te—C10 2.136 (2)
Te—N 2.8079 (16)
C1—Te—C10 94.19 (7)
C1—Te—N 70.77 (6)
C10—Te—N 164.92 (6)

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF.

Hydrid Te, N ligands with soft Te and hard N are of current interest due to their intramolecular coordination as the trans bond is activated and easily cleaved by metals (Kaur et al. 2009). Thus incorporation of soft tellurium and hard nitrogen into mixed donor Te, N bidentate ligands makes them interesting and promising as candidates for catalysts in combination with soft transition metals like Pd and the Rh group metals. Their coordination properties can be varied by changing the nitrogen function. Thus by introduction of a secondary bonding interaction which weakens the bond trans to Te in ortho-coordinated or suitably arranged substrates, the catalytic transformation of tellurides as substrates in Heck-type (Nishibayashi et al. 1996a; Nishibayashi et al. 1996b) and cross coupling (Zeni & Comasseto, 1999; Zeni et al. 2001; Cella et al. 2006) reactions and their coordination properties (Kaur et al. 2009) can be influenced. Our group (Singh et al. 1990; Kaur et al. 1995; Menon et al. 1996; Panda et al. 1999) as well as others (Detty et al. 1995; Drake et al. 2001, Engman et al. 2004) have been involved in the synthesis and studies of such intramolecularly coordinated organotellurides. The title compound, but not the structure, has been reported previously by Detty and co-workers as well as by our group (Kaur et al. 1995).

In the structure of the title compound, considering the bonding geometry around the Te as V-shaped with a longer intramolecular Te···N secondary interaction, a pseudo five-membered puckered ring can be envisioned. The Te···N distance of 2.8079 (16) Å is much greater than the sum of their covalent radii (2.11 Å; Cordero et al. 2008) but less than the sum of their van der Waal radii (3.61 Å; Bondi, 1964) and greater than the corresponding distance in similar compounds viz., 2-NMe2CH2C6H4TeCl (2.362 (3) Å; Engman et al. 2004), 2-NMe2CH2C6H4TeI (2.366 (4) Å; Kaur et al. 1995) or 8-(dimethylamino)-1-naphthyl phenyl telluride (2.713 (1) Å; Menon et al. 1996). Due to this hypervalent intramolecular Te···N contact the Te—C bond (2.137 (2) Å) trans to the amino group gets slightly elongated compared to the other Te—C bond (2.1249 (18) Å). The bond angle for the trans N—Te—C atoms (164.92 (6)°) deviates significantly from linearity.

Related literature top

For Heck and cross-coupling reactions, see: Cella et al. (2006); Nishibayashi et al. (1996a, 1996b); Zeni & Comasseto (1999); Zeni et al. (2001). For intramolecularly coordinated tellurides, see: Detty et al. (1995); Drake et al. (2001); Engman et al. (2004); Kaur et al. (1995, 2009); Menon et al. (1996); Panda et al. (1999); Singh et al. (1990). For van der Waals and covalent radii, see: Bondi (1964); Cordero et al. (2008).

Experimental top

The title compound was prepared by the reported procedure (Kaur et al. 1995). A saturated solution of the compound was made in warm n-pentane and allowed to evaporate slowly at room temperature to grow crystals suitable for diffraction.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances ranging from 0.95 to 0.99 Å and Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for CH3 H atoms].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of C15H17NTe the showing the atom numbering scheme and 50% probability displacement ellipsoids. The secondary interaction between the N and Te is shown as a dashed line.
[Figure 2] Fig. 2. The molecular packing for C15H17NTe viewed down the a axis. The secondary interaction between the N and Te is shown by dashed lines.
2-(Dimethylaminomethyl)phenyl phenyl telluride top
Crystal data top
C15H17NTeF(000) = 664
Mr = 338.90Dx = 1.572 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8619 reflections
a = 8.5736 (3) Åθ = 4.9–32.4°
b = 13.2472 (5) ŵ = 2.06 mm1
c = 12.6719 (4) ÅT = 110 K
β = 95.933 (3)°Prism, colorless
V = 1431.52 (9) Å30.49 × 0.41 × 0.27 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
4836 independent reflections
Radiation source: Enhance (Mo) X-ray Source2926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.5081 pixels mm-1θmax = 32.4°, θmin = 4.9°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1819
Tmin = 0.728, Tmax = 1.000l = 1818
20642 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0289P)2]
where P = (Fo2 + 2Fc2)/3
4836 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C15H17NTeV = 1431.52 (9) Å3
Mr = 338.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5736 (3) ŵ = 2.06 mm1
b = 13.2472 (5) ÅT = 110 K
c = 12.6719 (4) Å0.49 × 0.41 × 0.27 mm
β = 95.933 (3)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
4836 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2926 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 1.000Rint = 0.028
20642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 0.97Δρmax = 0.58 e Å3
4836 reflectionsΔρmin = 0.47 e Å3
156 parameters
Special details top

Experimental. CrysAlis RED, (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te0.886656 (14)0.206826 (9)0.327530 (10)0.04605 (6)
C71.0873 (2)0.00329 (16)0.33777 (15)0.0462 (5)
H7A1.14840.02300.40250.055*
H7B1.13490.06810.31900.055*
C10.8142 (2)0.05794 (13)0.36112 (13)0.0373 (4)
C20.6624 (2)0.03853 (16)0.38466 (14)0.0460 (4)
H2A0.58880.09220.38400.055*
C30.6175 (2)0.05790 (16)0.40897 (16)0.0533 (5)
H3A0.51340.07040.42490.064*
C40.7225 (3)0.13543 (17)0.41016 (16)0.0566 (5)
H4A0.69230.20160.42870.068*
C50.8725 (3)0.11769 (15)0.38443 (15)0.0497 (5)
H5A0.94350.17260.38310.060*
C60.9219 (2)0.02150 (14)0.36041 (14)0.0395 (4)
N1.09600 (18)0.06793 (12)0.25179 (13)0.0470 (4)
C81.0372 (3)0.0248 (2)0.14988 (17)0.0711 (7)
H8A0.93020.00020.15330.107*
H8B1.10500.03110.13290.107*
H8C1.03660.07670.09470.107*
C91.2542 (3)0.1090 (2)0.2514 (2)0.0739 (7)
H9A1.28520.14260.31920.111*
H9B1.25590.15790.19340.111*
H9C1.32770.05400.24120.111*
C100.6957 (2)0.27717 (13)0.39468 (15)0.0433 (4)
C110.5679 (3)0.31290 (16)0.32958 (17)0.0554 (5)
H11A0.56330.30320.25500.066*
C120.4467 (3)0.36259 (18)0.37197 (19)0.0631 (6)
H12A0.35870.38560.32660.076*
C130.4534 (3)0.37856 (17)0.47833 (19)0.0609 (6)
H13A0.37090.41360.50710.073*
C140.5789 (3)0.34409 (18)0.54402 (18)0.0627 (6)
H14A0.58270.35480.61840.075*
C150.6989 (3)0.29428 (15)0.50326 (16)0.0536 (5)
H15B0.78560.27100.54970.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te0.04845 (9)0.04144 (8)0.04904 (9)0.00098 (6)0.00871 (6)0.00703 (6)
C70.0416 (10)0.0500 (12)0.0469 (11)0.0059 (9)0.0049 (8)0.0024 (8)
C10.0395 (9)0.0410 (10)0.0314 (8)0.0007 (8)0.0031 (7)0.0031 (7)
C20.0416 (10)0.0501 (12)0.0468 (10)0.0001 (9)0.0069 (8)0.0066 (9)
C30.0495 (11)0.0563 (14)0.0564 (12)0.0160 (10)0.0169 (9)0.0145 (10)
C40.0731 (15)0.0465 (13)0.0521 (12)0.0174 (11)0.0154 (10)0.0081 (9)
C50.0640 (13)0.0393 (11)0.0463 (11)0.0035 (10)0.0080 (9)0.0023 (9)
C60.0424 (10)0.0416 (10)0.0341 (9)0.0011 (8)0.0025 (7)0.0013 (8)
N0.0431 (9)0.0491 (10)0.0503 (9)0.0027 (7)0.0128 (7)0.0049 (8)
C80.0833 (16)0.0851 (19)0.0466 (13)0.0158 (15)0.0149 (11)0.0025 (12)
C90.0555 (13)0.0756 (18)0.0948 (18)0.0037 (12)0.0279 (12)0.0159 (14)
C100.0504 (11)0.0327 (10)0.0469 (11)0.0005 (8)0.0049 (9)0.0028 (8)
C110.0605 (13)0.0542 (14)0.0499 (12)0.0097 (10)0.0022 (10)0.0012 (9)
C120.0563 (13)0.0605 (15)0.0712 (15)0.0165 (11)0.0005 (11)0.0013 (12)
C130.0652 (14)0.0455 (12)0.0755 (15)0.0070 (11)0.0238 (12)0.0006 (11)
C140.0827 (16)0.0591 (15)0.0486 (12)0.0050 (12)0.0171 (12)0.0042 (10)
C150.0603 (13)0.0534 (13)0.0462 (11)0.0050 (10)0.0006 (9)0.0030 (9)
Geometric parameters (Å, º) top
Te—C12.1242 (18)N—C91.462 (3)
Te—C102.136 (2)C8—H8A0.9800
Te—N2.8079 (16)C8—H8B0.9800
C7—N1.449 (2)C8—H8C0.9800
C7—C61.495 (2)C9—H9A0.9800
C7—H7A0.9900C9—H9B0.9800
C7—H7B0.9900C9—H9C0.9800
C1—C21.389 (3)C10—C111.385 (3)
C1—C61.401 (3)C10—C151.392 (3)
C2—C31.378 (3)C11—C121.384 (3)
C2—H2A0.9500C11—H11A0.9500
C3—C41.365 (3)C12—C131.360 (3)
C3—H3A0.9500C12—H12A0.9500
C4—C51.379 (3)C13—C141.369 (3)
C4—H4A0.9500C13—H13A0.9500
C5—C61.387 (3)C14—C151.368 (3)
C5—H5A0.9500C14—H14A0.9500
N—C81.454 (3)C15—H15B0.9500
C1—Te—C1094.19 (7)C9—N—Te112.55 (14)
C1—Te—N70.77 (6)N—C8—H8A109.5
C10—Te—N164.92 (6)N—C8—H8B109.5
N—C7—C6111.92 (14)H8A—C8—H8B109.5
N—C7—H7A109.2N—C8—H8C109.5
C6—C7—H7A109.2H8A—C8—H8C109.5
N—C7—H7B109.2H8B—C8—H8C109.5
C6—C7—H7B109.2N—C9—H9A109.5
H7A—C7—H7B107.9N—C9—H9B109.5
C2—C1—C6119.70 (17)H9A—C9—H9B109.5
C2—C1—Te120.99 (14)N—C9—H9C109.5
C6—C1—Te119.30 (13)H9A—C9—H9C109.5
C3—C2—C1120.59 (18)H9B—C9—H9C109.5
C3—C2—H2A119.7C11—C10—C15117.82 (19)
C1—C2—H2A119.7C11—C10—Te120.25 (15)
C4—C3—C2120.08 (19)C15—C10—Te121.81 (14)
C4—C3—H3A120.0C12—C11—C10120.7 (2)
C2—C3—H3A120.0C12—C11—H11A119.6
C3—C4—C5119.9 (2)C10—C11—H11A119.6
C3—C4—H4A120.0C13—C12—C11120.2 (2)
C5—C4—H4A120.0C13—C12—H12A119.9
C4—C5—C6121.48 (19)C11—C12—H12A119.9
C4—C5—H5A119.3C12—C13—C14120.0 (2)
C6—C5—H5A119.3C12—C13—H13A120.0
C5—C6—C1118.17 (17)C14—C13—H13A120.0
C5—C6—C7120.53 (17)C15—C14—C13120.4 (2)
C1—C6—C7121.27 (17)C15—C14—H14A119.8
C7—N—C8111.84 (17)C13—C14—H14A119.8
C7—N—C9111.41 (16)C14—C15—C10120.87 (19)
C8—N—C9112.33 (17)C14—C15—H15B119.6
C7—N—Te94.88 (10)C10—C15—H15B119.6
C8—N—Te112.69 (13)
C10—Te—C1—C217.26 (15)C6—C7—N—Te45.84 (15)
N—Te—C1—C2161.59 (15)C1—Te—N—C735.48 (10)
C10—Te—C1—C6162.12 (13)C10—Te—N—C739.9 (3)
N—Te—C1—C619.02 (12)C1—Te—N—C880.65 (15)
C6—C1—C2—C31.0 (3)C10—Te—N—C876.3 (3)
Te—C1—C2—C3178.36 (13)C1—Te—N—C9151.08 (15)
C1—C2—C3—C40.0 (3)C10—Te—N—C9155.5 (2)
C2—C3—C4—C51.6 (3)C1—Te—C10—C11101.37 (16)
C3—C4—C5—C62.2 (3)N—Te—C10—C1197.2 (3)
C4—C5—C6—C11.1 (3)C1—Te—C10—C1582.60 (16)
C4—C5—C6—C7177.09 (17)N—Te—C10—C1586.8 (3)
C2—C1—C6—C50.5 (3)C15—C10—C11—C120.9 (3)
Te—C1—C6—C5178.88 (13)Te—C10—C11—C12177.11 (17)
C2—C1—C6—C7178.66 (16)C10—C11—C12—C131.2 (4)
Te—C1—C6—C70.7 (2)C11—C12—C13—C141.0 (4)
N—C7—C6—C5140.26 (18)C12—C13—C14—C150.6 (4)
N—C7—C6—C141.6 (2)C13—C14—C15—C100.3 (4)
C6—C7—N—C871.0 (2)C11—C10—C15—C140.5 (3)
C6—C7—N—C9162.38 (17)Te—C10—C15—C14176.60 (17)

Experimental details

Crystal data
Chemical formulaC15H17NTe
Mr338.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)8.5736 (3), 13.2472 (5), 12.6719 (4)
β (°) 95.933 (3)
V3)1431.52 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.49 × 0.41 × 0.27
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.728, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20642, 4836, 2926
Rint0.028
(sin θ/λ)max1)0.754
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.058, 0.97
No. of reflections4836
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.47

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Te—C12.1242 (18)Te—N2.8079 (16)
Te—C102.136 (2)
C1—Te—C1094.19 (7)C10—Te—N164.92 (6)
C1—Te—N70.77 (6)
 

Acknowledgements

HSB is grateful to the Department of Science and Technology (DST) for the award of a Ramanna Fellowship. TC is grateful to the CSIR for a JRF/SRF fellowship. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationCella, R., Cunha, R. L. O., Reis, A. E. S., Pimenta, D. C., Klitzke, C. F. & Stefani, H. A. (2006). J. Org. Chem. 71, 244–250.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838.  Web of Science CrossRef Google Scholar
First citationDetty, R. M., Friedman, A. E. & McMillan, M. (1995). Organometallics, 14, 1442–1449.  CrossRef CAS Web of Science Google Scholar
First citationDrake, J. E., Hursthouse, M. B., Kulcsar, M., Light, M. E. & Silvestru, A. (2001). J. Organomet. Chem. 623, 153–160.  CAS Google Scholar
First citationEngman, L., Wojtoń, A., Oleksyn, B. J. & Śliwiński, J. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 285–292.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaur, R., Menon, S. C., Panda, A., Singh, H. B., Patel, R. P. & Butcher, R. J. (2009). Organometallics, 14, 2363–2371.  Web of Science CSD CrossRef Google Scholar
First citationKaur, R., Singh, H. B. & Butcher, R. J. (1995). Organometallics, 14, 4745–4763.  CSD CrossRef Web of Science Google Scholar
First citationMenon, S. C., Singh, H. B., Jasinski, J. M., Jasinski, J. P. & Butcher, R. J. (1996). Organometallics, 15, 1707–1712.  CSD CrossRef CAS Web of Science Google Scholar
First citationNishibayashi, Y., Cho, C. S., Ohe, K. & Uemura, S. (1996a). J. Organomet. Chem. 526, 335–339.  CrossRef CAS Web of Science Google Scholar
First citationNishibayashi, Y., Cho, C. S. & Uemura, S. (1996b). J. Organomet. Chem. 507, 197–200.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPanda, A., Mugesh, G., Singh, H. B. & Butcher, R. J. (1999). Organometallics, 18, 1986–1993.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, H. B., Sudha, N., West, A. A. & Hamor, T. A. (1990). J. Chem. Soc. Dalton Trans. pp. 907–913.  CSD CrossRef Web of Science Google Scholar
First citationZeni, C. & Comasseto, J. V. (1999). Tetrahedron Lett. 40, 4619–4622.  Web of Science CrossRef CAS Google Scholar
First citationZeni, G., Menezes, P. H., Moro, A. V., Braga, A. L., Silveira, C. C. & Stefani, H. A. (2001). Synlett, 9, 1473–1475.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2562-o2563
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds