organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Phenyl­prop­yl)urea

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: jdw3@st-and.ac.uk

(Received 22 September 2009; accepted 23 September 2009; online 26 September 2009)

In the crystal of the title compound, C10H14N2O, double supra­molecular layers of PhCH2CH2CH2NHC(O)NH2 are formed parallel to the bc plane by inter­molecular N—H⋯O hydrogen bonding, with R22(8) and R21(6) motifs in the b- and c-axis directions, respectively. The mean plane of the Car—C—C group makes a dihedral angle of 84.8 (2)° with the benzene ring.

Related literature

For related structural information see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background chemistry, see: Gray et al. (2005[Gray, I. P., Bhattachcharyya, P., Slawin, A. M. Z. & Woollins, J. D. (2005). Chem. Eur. J. 11, 6221-6227.]); Hua & Woollins (2009[Hua, G. & Woollins, J. D. (2009). Angew. Chem. Int. Ed. 48, 1368-1377.]); Renodon-Cornière et al. (2002[Renodon-Cornière, A., Dijols, S., Perollier, C., Lefevre-Groboillot, D., Boucher, J.-L., Attias, R., Sari, M.-A., Stuehr, D. & Mansuy, D. (2002). J. Med. Chem. 45, 944-954.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14N2O

  • Mr = 178.23

  • Monoclinic, P 21 /c

  • a = 17.002 (4) Å

  • b = 6.4953 (15) Å

  • c = 9.171 (2) Å

  • β = 91.401 (8)°

  • V = 1012.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 93 K

  • 0.25 × 0.04 × 0.03 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2004[Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.981, Tmax = 0.998

  • 6696 measured reflections

  • 2126 independent reflections

  • 1360 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.144

  • S = 1.03

  • 2126 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.88 2.10 2.936 (2) 159
N1—H1B⋯O1ii 0.88 2.09 2.8788 (19) 148
N2—H2⋯O1ii 0.863 (18) 2.127 (19) 2.9240 (19) 153.2 (17)
Symmetry codes: (i) -x+1, -y+3, -z+1; (ii) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

2,4-Bis(phenyl)-1,3-diselenadiphosphetane-2,4-diselenide [PhP(Se)(µ-Se)]2, which is known as Woollins reagent, WR, has received increasing attention due to its relatively unpleasant chemical properties and since it can be prepared readily and safely handled (Gray et al. 2005). Now it is becoming a very useful selenium source or reagent in synthetic chemistry (Hua et al. 2009; Hua & Woollins, 2009). We report here the synthesis and X-ray structure of C6H4(CH2)3NHCONH2. The title compound was prepared by the reaction of Woollins' reagent with 3-phenylpropan-1-amine.

Double supramolecular layers of the title compound (Fig. 2), PhCH2CH2CH2NHC(O)NH2, are formed parallel to the bc plane by intermolecular N—H···O hydrogen bonding (see Table 1), with R22(8) and R21(6) motifs in approximately b and c directions respectively (Bernstein et al., 1995). The mean plane of the C3—C5 group makes dihedral angle of 84.8 (2)° with the benzene ring.

Related literature top

For related structural information see Bernstein et al. (1995). For background chemistry, see: Gray et al. (2005); Hua & Woollins (2009); Renodon-Cornière et al. (2002).

Experimental top

A toluene suspension of Woollins reagent (0.54 g, 1.0 mmol) and Ph(CH2)3NHCN (0.29 g, 2.0 mmol), which were prepared from cyanogen bromide with primary or secondary amine in dry methanol in the presence of excess of anhydrous CH3COONa at room temperature in almost quantitative yield (Renodon-Cornière et al. 2002), was refluxed for 4 h under nitrogen during which time the mixtures became a clear reddish brown solution. After cooling and addition of water (1 cm3) the reflux was continued for another 1 h. The solvent was removed in vacuum, and the residue was purified by column chromatography (silica gel, 9:1 dichloromethane/ethyl acetate as eluant) to afford the title compound in the yield of 95%. The single crystals of the title compound for the X-ray crystallographic analysis were obtained by recrystallization from dichloromethane/hexane as colorless blocks.

Refinement top

All H atoms except H2 (which was freely refined) were included in calculated positions (C—H distances are 0.98 Å methyl H atoms, 0.99 Å for methylene H atoms and 0.95 Å for aryl H atoms, N—H 0.88 Å) and were refined as riding atoms with Uiso(H) = 1.2 Ueq (parent atom, amino, methylene and aryl H atoms) or Uiso(H) = 1.5 Ueq (parent atom, methyl H atoms).

Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View along the b direction of the crystal packing of the title compound with hydrogen bonding shown as dashed lines.
1-(3-Phenylpropyl)urea top
Crystal data top
C10H14N2OF(000) = 384
Mr = 178.23Dx = 1.169 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.002 (4) ÅCell parameters from 2697 reflections
b = 6.4953 (15) Åθ = 2.4–28.1°
c = 9.171 (2) ŵ = 0.08 mm1
β = 91.401 (8)°T = 93 K
V = 1012.5 (4) Å3Platelet, colorless
Z = 40.25 × 0.04 × 0.03 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2126 independent reflections
Radiation source: rotating anode1360 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.038
Detector resolution: 0.83 pixels mm-1θmax = 28.5°, θmin = 3.4°
ω scansh = 1620
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2004)
k = 87
Tmin = 0.981, Tmax = 0.998l = 911
6696 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0607P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2126 reflectionsΔρmax = 0.23 e Å3
122 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (5)
Crystal data top
C10H14N2OV = 1012.5 (4) Å3
Mr = 178.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.002 (4) ŵ = 0.08 mm1
b = 6.4953 (15) ÅT = 93 K
c = 9.171 (2) Å0.25 × 0.04 × 0.03 mm
β = 91.401 (8)°
Data collection top
Rigaku Mercury CCD
diffractometer
2126 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2004)
1360 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.998Rint = 0.038
6696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
2126 reflectionsΔρmin = 0.20 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56839 (7)1.2854 (2)0.55596 (11)0.0367 (4)
N20.61033 (9)1.1114 (2)0.35832 (16)0.0321 (4)
C50.81085 (11)0.5672 (3)0.32854 (16)0.0325 (5)
N10.54532 (10)1.4186 (3)0.33030 (14)0.0401 (5)
H1A0.52191.52740.36650.048*
H1B0.54991.40600.23530.048*
C20.64786 (11)0.9469 (3)0.44128 (17)0.0342 (5)
H2A0.60750.84900.47490.041*
H2B0.67561.00480.52820.041*
C100.79059 (12)0.3888 (3)0.25485 (18)0.0396 (5)
H100.74130.32580.27210.047*
C60.88327 (12)0.6552 (3)0.3003 (2)0.0451 (6)
H60.89870.77770.34970.054*
C30.70581 (11)0.8358 (3)0.34725 (18)0.0338 (5)
H3A0.74250.93780.30630.041*
H3B0.67680.77030.26460.041*
C40.75349 (11)0.6713 (3)0.42853 (18)0.0354 (5)
H4A0.78280.73530.51140.042*
H4B0.71740.56710.46840.042*
C90.84088 (13)0.3000 (3)0.1561 (2)0.0457 (6)
H90.82590.17650.10740.055*
C80.91183 (13)0.3890 (4)0.1284 (2)0.0475 (6)
H80.94590.32880.05980.057*
C70.93348 (13)0.5670 (4)0.2009 (2)0.0533 (6)
H70.98280.62940.18280.064*
C10.57407 (10)1.2717 (3)0.42002 (17)0.0305 (5)
H20.6095 (11)1.110 (3)0.264 (2)0.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0480 (9)0.0409 (8)0.0211 (7)0.0078 (6)0.0029 (5)0.0016 (5)
N20.0408 (10)0.0356 (9)0.0199 (8)0.0082 (7)0.0011 (6)0.0016 (6)
C50.0355 (11)0.0340 (11)0.0280 (9)0.0034 (8)0.0013 (7)0.0026 (7)
N10.0575 (12)0.0397 (10)0.0232 (8)0.0145 (8)0.0041 (7)0.0004 (6)
C20.0405 (12)0.0357 (11)0.0264 (9)0.0050 (8)0.0023 (7)0.0009 (7)
C100.0426 (13)0.0348 (11)0.0415 (11)0.0006 (9)0.0055 (8)0.0006 (8)
C60.0402 (13)0.0472 (13)0.0480 (12)0.0050 (10)0.0030 (9)0.0113 (9)
C30.0385 (12)0.0351 (11)0.0281 (10)0.0043 (8)0.0043 (7)0.0005 (7)
C40.0397 (12)0.0363 (11)0.0303 (10)0.0037 (8)0.0008 (8)0.0013 (7)
C90.0541 (14)0.0392 (12)0.0440 (12)0.0029 (10)0.0029 (9)0.0079 (9)
C80.0447 (14)0.0572 (15)0.0408 (12)0.0130 (11)0.0071 (9)0.0058 (10)
C70.0388 (13)0.0659 (16)0.0557 (13)0.0033 (11)0.0092 (10)0.0079 (11)
C10.0327 (11)0.0361 (11)0.0228 (10)0.0010 (8)0.0022 (7)0.0001 (7)
Geometric parameters (Å, º) top
O1—C11.2559 (18)C10—H100.9500
N2—C11.342 (2)C6—C71.387 (3)
N2—C21.450 (2)C6—H60.9500
N2—H20.863 (18)C3—C41.525 (2)
C5—C101.380 (3)C3—H3A0.9900
C5—C61.388 (3)C3—H3B0.9900
C5—C41.514 (3)C4—H4A0.9900
N1—C11.344 (2)C4—H4B0.9900
N1—H1A0.8800C9—C81.367 (3)
N1—H1B0.8800C9—H90.9500
C2—C31.509 (2)C8—C71.379 (3)
C2—H2A0.9900C8—H80.9500
C2—H2B0.9900C7—H70.9500
C10—C91.386 (3)
C1—N2—C2123.43 (14)C4—C3—H3A108.8
C1—N2—H2115.5 (12)C2—C3—H3B108.8
C2—N2—H2121.1 (12)C4—C3—H3B108.8
C10—C5—C6117.78 (17)H3A—C3—H3B107.7
C10—C5—C4120.97 (17)C5—C4—C3111.07 (14)
C6—C5—C4121.11 (17)C5—C4—H4A109.4
C1—N1—H1A120.0C3—C4—H4A109.4
C1—N1—H1B120.0C5—C4—H4B109.4
H1A—N1—H1B120.0C3—C4—H4B109.4
N2—C2—C3109.73 (13)H4A—C4—H4B108.0
N2—C2—H2A109.7C8—C9—C10120.42 (19)
C3—C2—H2A109.7C8—C9—H9119.8
N2—C2—H2B109.7C10—C9—H9119.8
C3—C2—H2B109.7C9—C8—C7119.43 (18)
H2A—C2—H2B108.2C9—C8—H8120.3
C5—C10—C9121.23 (19)C7—C8—H8120.3
C5—C10—H10119.4C8—C7—C6120.1 (2)
C9—C10—H10119.4C8—C7—H7120.0
C7—C6—C5121.1 (2)C6—C7—H7120.0
C7—C6—H6119.5O1—C1—N2121.38 (15)
C5—C6—H6119.5O1—C1—N1121.44 (16)
C2—C3—C4113.74 (14)N2—C1—N1117.17 (14)
C2—C3—H3A108.8
C1—N2—C2—C3160.22 (17)C2—C3—C4—C5179.52 (16)
C6—C5—C10—C90.2 (3)C5—C10—C9—C80.6 (3)
C4—C5—C10—C9175.84 (17)C10—C9—C8—C70.8 (3)
C10—C5—C6—C70.2 (3)C9—C8—C7—C60.4 (3)
C4—C5—C6—C7175.50 (18)C5—C6—C7—C80.0 (3)
N2—C2—C3—C4175.12 (15)C2—N2—C1—O12.2 (3)
C10—C5—C4—C392.9 (2)C2—N2—C1—N1176.63 (16)
C6—C5—C4—C382.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.882.102.936 (2)159
N1—H1B···O1ii0.882.092.8788 (19)148
N2—H2···O1ii0.863 (18)2.127 (19)2.9240 (19)153.2 (17)
Symmetry codes: (i) x+1, y+3, z+1; (ii) x, y+5/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H14N2O
Mr178.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)17.002 (4), 6.4953 (15), 9.171 (2)
β (°) 91.401 (8)
V3)1012.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.04 × 0.03
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2004)
Tmin, Tmax0.981, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
6696, 2126, 1360
Rint0.038
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.144, 1.03
No. of reflections2126
No. of parameters122
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.882.102.936 (2)159.3
N1—H1B···O1ii0.882.092.8788 (19)148.4
N2—H2···O1ii0.863 (18)2.127 (19)2.9240 (19)153.2 (17)
Symmetry codes: (i) x+1, y+3, z+1; (ii) x, y+5/2, z1/2.
 

Acknowledgements

The authors are grateful to the University of St Andrews and the Engineering and Physical Science Research Council (EPRSC, UK) for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationGray, I. P., Bhattachcharyya, P., Slawin, A. M. Z. & Woollins, J. D. (2005). Chem. Eur. J. 11, 6221–6227.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHua, G. & Woollins, J. D. (2009). Angew. Chem. Int. Ed. 48, 1368–1377.  Web of Science CrossRef CAS Google Scholar
First citationRenodon-Cornière, A., Dijols, S., Perollier, C., Lefevre-Groboillot, D., Boucher, J.-L., Attias, R., Sari, M.-A., Stuehr, D. & Mansuy, D. (2002). J. Med. Chem. 45, 944–954.  Web of Science PubMed Google Scholar
First citationRigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds