organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-(Amino­carbon­yl)phen­yl]-4-hydr­­oxy-2-methyl-2H-1,2-benzo­thia­zine-3-carboxamide 1,1-dioxide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 24 September 2009; accepted 25 September 2009; online 30 September 2009)

In the title compound, C17H15N3O5S, the thia­zine ring adopts a distorted half-chair conformation. The mol­ecular structure is stabilized by intra­molecular N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonding. Pairs of mol­ecules are bound together as centrosymmetric dimers through N—H⋯O hydrogen bonds.

Related literature

For the synthesis of related mol­ecules, see: Braun (1923[Braun, J. (1923). Chem. Ber. 56, 2332-2343.]); Ahmad et al. (2008[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.]); Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26,1771-1775.], 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For the biological activity of 1,2-benzothia­zine 1,1-dioxides, see: Bihovsky et al. (2004[Bihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett. 14, 1035-1038.]); Turck et al. (1996[Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79-84.]); Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]). For similar mol­ecules, see: Kojić-Prodić & Rużić-Toroš (1982[Kojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948-2951.]); Siddiqui et al. (2009[Siddiqui, W. A., Ali, M., Zia-ur-Rehman, M., Sharif, S. & Tizzard, G. J. (2009). Acta Cryst. E65, o900-o901.]); Weast et al. (1984[Weast, R. C., Astle, M. J. & Beyer, W. H. (1984). Handbook of Chemistry and Physics, 65th ed. Boca Raton, Florida: CRC Press.]); Zia-ur-Rehman et al. (2007[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Ahmad, S. (2007). Acta Cryst. E63, o900-o901.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15N3O5S

  • Mr = 373.38

  • Monoclinic, P 21 /c

  • a = 8.1377 (6) Å

  • b = 7.0515 (6) Å

  • c = 29.069 (2) Å

  • β = 96.502 (3)°

  • V = 1657.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.39 × 0.25 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.915, Tmax = 0.975

  • 16109 measured reflections

  • 3753 independent reflections

  • 3011 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.087

  • wR(F2) = 0.213

  • S = 1.09

  • 3753 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.82 1.85 2.569 (5) 145
N2—H2⋯O5 0.86 1.92 2.607 (5) 136
N2—H2⋯N1 0.86 2.28 2.728 (5) 113
N3—H3A⋯O5i 0.86 2.22 2.941 (6) 141
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Owing to the verstaile applications of 1,2-benzothiazine 1,1-dioxides, considerable attention has been given to their synthesis since their very first synthesis (Braun, 1923). Among these, Piroxicam (Zia-ur-Rehman et al., 2005), and Meloxicam (Turck et al., 1996) are familiar for their analgesic action and are being used world wide as non-steroidal anti-inflammatory drugs (NSAIDs). Some of the 3,4-dihydro-1,2-benzothiazine-3-carboxylate 1,1-dioxide α-ketomide and P(2)—P(3) peptide mimetic aldehyde compounds act as potent calpain I inhibitors (Bihovsky et al., 2004) while 1,2-benzothiazin-3-yl-quinazolin-4(3H)-ones possess anti-bacterial properties (Zia-ur-Rehman et al., 2006).

In continuation of our work on the synthesis (Zia-ur-Rehman et al., 2006, biological activity (Zia-ur-Rehman et al., 2009) and crystal structures (Zia-ur-Rehman et al., 2007; Ahmad et al., 2008, Siddiqui et al., 2009) of various 1,2-benzothiazine-1,1-dioxides, we herein report the crystal structure of the title compound (I) (Scheme and figure 1). Like its already reported dimethylsulfoxide solvate analogue (Zia-ur-Rehman et al., 2007), thiazine ring involving two double bonds, exhibits sofa conformation; with S1/C1/C2/C7 relatively planar and N1 showing significant departure from plane due to its pyramidal geometry. The enolic hydrogen on O1 is involved in intramolecular hydrogen bonding [O1—H1···O4] with the carbonyl oxygen at C9 giving rise to a six-membered hydrogen bond ring (Table 1). Atom H2 forms hydrogen bonds with both N1 and O5 giving rise to five and six-membered hydrogen bond rings respectively. The C1—S1 [1.755 Å] bond is shorter than a normal C—S single bond (1.81–2.55 Å) (Weast et al., 1984) due to partial double bond character and is in agreement with similar molecules (Kojić-Prodić & Rużić-Toroš, 1982). Each molecule is centrosymmetrically linked to its adjacent one forming a dimer through intermolecular [N—H3B···O5] hydrogen bonds (Fig. 2).

Related literature top

For synthesis of related molecules, see: Braun (1923); Ahmad et al. (2008); Zia-ur-Rehman et al. (2005); Zia-ur-Rehman et al. (2009). For biological activity of 1,2-benzothiazine 1,1-dioxides, see: Bihovsky et al. (2004); Turck et al. (1996); Zia-ur-Rehman et al. (2006). For similar molecules, see: Kojić-Prodić & Rużić-Toroš (1982); Siddiqui et al. (2009); Weast et al. (1984); Zia-ur-Rehman et al. (2007).

Experimental top

N-[2-(Aminocarbonyl)phenyl]-4-hydroxy-2-methyl-2H-1,2-benzothiazine- 3-carboxamide 1,1-dioxide was synthesized according to a literature method (Zia-ur-Rehman et al., 2006). Suitable crystals were obtained by dissoving the compound in chloroform followed by slow evaporation at room temperature.The compound was dissolved in a mixture of methanol and DMSO (80:20 v/v) at room temperature. Crystals were obtained by slow evaporation and dried under high vacuum.

Refinement top

All hydrogen atoms were identified in the difference map. They were refined using a riding model with O—H = 0.84 Å, N—H = 0.86 Å, Cmethyl—H 0.98 Å and Caromatic—H = 0.95 Å. and U(H) set to 1.2Ueq of the parent atoms or set to 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the three-dimensional crystal packing showing hydrogen-bonded interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
N-[2-(Aminocarbonyl)phenyl]-4-hydroxy-2-methyl-2H-1,2- benzothiazine-3-carboxamide 1,1-dioxide top
Crystal data top
C17H15N3O5SF(000) = 776
Mr = 373.38Dx = 1.496 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6164 reflections
a = 8.1377 (6) Åθ = 2.5–27.1°
b = 7.0515 (6) ŵ = 0.23 mm1
c = 29.069 (2) ÅT = 296 K
β = 96.502 (3)°Needles, colourless
V = 1657.3 (2) Å30.39 × 0.25 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3753 independent reflections
Radiation source: fine-focus sealed tube3011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1010
Tmin = 0.915, Tmax = 0.975k = 99
16109 measured reflectionsl = 3237
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.213H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0335P)2 + 9.427P]
where P = (Fo2 + 2Fc2)/3
3753 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C17H15N3O5SV = 1657.3 (2) Å3
Mr = 373.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1377 (6) ŵ = 0.23 mm1
b = 7.0515 (6) ÅT = 296 K
c = 29.069 (2) Å0.39 × 0.25 × 0.11 mm
β = 96.502 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3753 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3011 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.975Rint = 0.039
16109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0870 restraints
wR(F2) = 0.213H-atom parameters constrained
S = 1.09Δρmax = 0.38 e Å3
3753 reflectionsΔρmin = 0.40 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35684 (14)0.5031 (2)0.33289 (4)0.0343 (3)
O20.2977 (5)0.6850 (5)0.34450 (12)0.0427 (9)
O30.5306 (4)0.4668 (7)0.33922 (13)0.0538 (11)
O40.1641 (4)0.3152 (6)0.38428 (12)0.0480 (10)
O50.3670 (4)0.3198 (6)0.47838 (12)0.0484 (10)
N10.2640 (5)0.3427 (6)0.36214 (13)0.0310 (9)
N20.0743 (5)0.2848 (6)0.43247 (12)0.0306 (8)
H20.18010.28260.43280.037*
N30.3804 (6)0.4241 (8)0.55160 (15)0.0534 (13)
H3A0.48170.45850.55130.064*
H3B0.33190.44070.57610.064*
O10.1513 (4)0.3895 (6)0.29823 (12)0.0436 (9)
H10.19680.37470.32180.065*
C10.2765 (6)0.4493 (7)0.27578 (16)0.0329 (10)
C20.1069 (6)0.4046 (7)0.26901 (16)0.0322 (10)
C30.0347 (8)0.3766 (8)0.22406 (17)0.0445 (13)
H30.07800.35160.21830.053*
C40.1301 (9)0.3861 (9)0.18781 (19)0.0577 (17)
H40.08050.36850.15770.069*
C50.2966 (9)0.4210 (10)0.19540 (19)0.0580 (17)
H50.35940.42210.17060.070*
C60.3718 (7)0.4546 (9)0.23979 (19)0.0470 (14)
H60.48450.48020.24510.056*
C70.0124 (6)0.3801 (7)0.30885 (16)0.0314 (10)
C80.0874 (6)0.3479 (7)0.35254 (16)0.0308 (10)
C90.0106 (6)0.3133 (7)0.39093 (15)0.0315 (10)
C100.0150 (6)0.2579 (6)0.47583 (15)0.0287 (9)
C110.1236 (6)0.2888 (7)0.51660 (16)0.0323 (10)
C120.0636 (7)0.2643 (7)0.55876 (17)0.0402 (12)
H120.13500.28100.58580.048*
C130.0980 (7)0.2160 (8)0.56205 (18)0.0441 (13)
H130.13580.20460.59090.053*
C140.2039 (7)0.1845 (8)0.5223 (2)0.0448 (13)
H140.31340.15140.52450.054*
C150.1485 (6)0.2019 (7)0.47945 (17)0.0374 (11)
H150.21970.17640.45280.045*
C160.2986 (6)0.3449 (8)0.51412 (16)0.0368 (11)
C170.3393 (7)0.1508 (9)0.3632 (2)0.0521 (15)
H17A0.30250.07900.38820.078*
H17B0.45760.16190.36780.078*
H17C0.30650.08730.33440.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0273 (5)0.0450 (7)0.0309 (6)0.0003 (5)0.0047 (4)0.0006 (5)
O20.048 (2)0.041 (2)0.0391 (19)0.0070 (17)0.0065 (16)0.0037 (16)
O30.0284 (18)0.084 (3)0.049 (2)0.000 (2)0.0067 (16)0.010 (2)
O40.0289 (18)0.079 (3)0.0368 (19)0.0027 (19)0.0076 (14)0.0050 (19)
O50.0350 (19)0.075 (3)0.0354 (19)0.0012 (19)0.0067 (15)0.0072 (19)
N10.0278 (19)0.038 (2)0.0276 (19)0.0065 (17)0.0039 (15)0.0006 (16)
N20.0260 (19)0.039 (2)0.0280 (19)0.0001 (17)0.0063 (15)0.0053 (17)
N30.042 (3)0.082 (4)0.036 (2)0.006 (3)0.0011 (19)0.009 (2)
O10.0307 (18)0.065 (3)0.0335 (18)0.0013 (18)0.0011 (14)0.0024 (18)
C10.040 (3)0.032 (2)0.028 (2)0.001 (2)0.0079 (19)0.0016 (18)
C20.037 (2)0.031 (2)0.029 (2)0.001 (2)0.0064 (19)0.0005 (19)
C30.063 (4)0.042 (3)0.029 (2)0.005 (3)0.005 (2)0.002 (2)
C40.087 (5)0.056 (4)0.029 (3)0.013 (3)0.004 (3)0.005 (3)
C50.076 (4)0.071 (4)0.031 (3)0.005 (4)0.024 (3)0.004 (3)
C60.046 (3)0.057 (4)0.041 (3)0.003 (3)0.016 (2)0.001 (3)
C70.030 (2)0.034 (2)0.030 (2)0.0008 (19)0.0067 (18)0.0015 (19)
C80.028 (2)0.034 (2)0.030 (2)0.0032 (19)0.0029 (17)0.0000 (19)
C90.034 (2)0.032 (2)0.029 (2)0.0000 (19)0.0034 (18)0.0003 (19)
C100.032 (2)0.026 (2)0.028 (2)0.0039 (18)0.0082 (18)0.0025 (18)
C110.039 (3)0.028 (2)0.031 (2)0.004 (2)0.0072 (19)0.0029 (19)
C120.058 (3)0.035 (3)0.029 (2)0.002 (2)0.011 (2)0.001 (2)
C130.063 (4)0.039 (3)0.035 (3)0.000 (3)0.023 (2)0.003 (2)
C140.045 (3)0.039 (3)0.054 (3)0.002 (2)0.021 (3)0.005 (3)
C150.036 (3)0.039 (3)0.039 (3)0.000 (2)0.012 (2)0.007 (2)
C160.034 (3)0.044 (3)0.031 (2)0.006 (2)0.0011 (19)0.003 (2)
C170.052 (3)0.049 (3)0.058 (4)0.020 (3)0.020 (3)0.014 (3)
Geometric parameters (Å, º) top
S1—O21.424 (4)C4—C51.371 (9)
S1—O31.428 (4)C4—H40.9300
S1—N11.648 (4)C5—C61.384 (8)
S1—C11.755 (5)C5—H50.9300
O4—C91.242 (6)C6—H60.9300
O5—C161.246 (6)C7—C81.364 (6)
N1—C81.433 (6)C8—C91.464 (6)
N1—C171.484 (7)C10—C151.403 (6)
N2—C91.337 (6)C10—C111.413 (6)
N2—C101.412 (5)C11—C121.380 (6)
N2—H20.8600C11—C161.488 (7)
N3—C161.333 (6)C12—C131.372 (8)
N3—H3A0.8600C12—H120.9300
N3—H3B0.8600C13—C141.378 (8)
O1—C71.335 (5)C13—H130.9300
O1—H10.8200C14—C151.379 (7)
C1—C61.372 (7)C14—H140.9300
C1—C21.407 (7)C15—H150.9300
C2—C31.385 (7)C17—H17A0.9600
C2—C71.471 (6)C17—H17B0.9600
C3—C41.379 (8)C17—H17C0.9600
C3—H30.9300
O2—S1—O3119.2 (3)O1—C7—C2114.2 (4)
O2—S1—N1108.0 (2)C8—C7—C2122.3 (4)
O3—S1—N1108.4 (2)C7—C8—N1121.2 (4)
O2—S1—C1108.6 (2)C7—C8—C9120.8 (4)
O3—S1—C1109.9 (2)N1—C8—C9117.9 (4)
N1—S1—C1101.3 (2)O4—C9—N2123.4 (4)
C8—N1—C17115.4 (4)O4—C9—C8120.3 (4)
C8—N1—S1113.0 (3)N2—C9—C8116.3 (4)
C17—N1—S1115.1 (3)C15—C10—N2121.8 (4)
C9—N2—C10129.2 (4)C15—C10—C11119.3 (4)
C9—N2—H2115.4N2—C10—C11118.9 (4)
C10—N2—H2115.4C12—C11—C10118.4 (5)
C16—N3—H3A120.0C12—C11—C16120.9 (5)
C16—N3—H3B120.0C10—C11—C16120.8 (4)
H3A—N3—H3B120.0C13—C12—C11122.1 (5)
C7—O1—H1109.5C13—C12—H12119.0
C6—C1—C2122.0 (5)C11—C12—H12119.0
C6—C1—S1122.2 (4)C12—C13—C14119.7 (5)
C2—C1—S1115.8 (3)C12—C13—H13120.2
C3—C2—C1118.0 (5)C14—C13—H13120.2
C3—C2—C7121.5 (5)C13—C14—C15120.4 (5)
C1—C2—C7120.5 (4)C13—C14—H14119.8
C4—C3—C2119.9 (6)C15—C14—H14119.8
C4—C3—H3120.1C14—C15—C10120.2 (5)
C2—C3—H3120.1C14—C15—H15119.9
C5—C4—C3121.2 (5)C10—C15—H15119.9
C5—C4—H4119.4O5—C16—N3120.8 (5)
C3—C4—H4119.4O5—C16—C11121.6 (4)
C4—C5—C6120.4 (5)N3—C16—C11117.6 (4)
C4—C5—H5119.8N1—C17—H17A109.5
C6—C5—H5119.8N1—C17—H17B109.5
C1—C6—C5118.5 (5)H17A—C17—H17B109.5
C1—C6—H6120.7N1—C17—H17C109.5
C5—C6—H6120.7H17A—C17—H17C109.5
O1—C7—C8123.6 (4)H17B—C17—H17C109.5
O2—S1—N1—C858.6 (4)O1—C7—C8—C92.6 (8)
O3—S1—N1—C8171.0 (3)C2—C7—C8—C9176.4 (4)
C1—S1—N1—C855.4 (4)C17—N1—C8—C796.6 (6)
O2—S1—N1—C17165.8 (4)S1—N1—C8—C738.8 (6)
O3—S1—N1—C1735.4 (4)C17—N1—C8—C982.0 (5)
C1—S1—N1—C1780.2 (4)S1—N1—C8—C9142.6 (4)
O2—S1—C1—C6106.1 (5)C10—N2—C9—O42.0 (8)
O3—S1—C1—C625.9 (5)C10—N2—C9—C8176.5 (4)
N1—S1—C1—C6140.4 (5)C7—C8—C9—O40.9 (8)
O2—S1—C1—C272.5 (4)N1—C8—C9—O4179.6 (5)
O3—S1—C1—C2155.5 (4)C7—C8—C9—N2179.5 (5)
N1—S1—C1—C241.0 (4)N1—C8—C9—N21.9 (7)
C6—C1—C2—C33.9 (8)C9—N2—C10—C1519.3 (8)
S1—C1—C2—C3174.7 (4)C9—N2—C10—C11160.5 (5)
C6—C1—C2—C7173.4 (5)C15—C10—C11—C120.6 (7)
S1—C1—C2—C78.0 (6)N2—C10—C11—C12179.2 (4)
C1—C2—C3—C42.4 (8)C15—C10—C11—C16178.9 (4)
C7—C2—C3—C4174.9 (5)N2—C10—C11—C161.3 (7)
C2—C3—C4—C50.7 (10)C10—C11—C12—C131.7 (8)
C3—C4—C5—C62.4 (11)C16—C11—C12—C13178.8 (5)
C2—C1—C6—C52.2 (9)C11—C12—C13—C142.2 (8)
S1—C1—C6—C5176.3 (5)C12—C13—C14—C150.2 (8)
C4—C5—C6—C10.9 (10)C13—C14—C15—C102.1 (8)
C3—C2—C7—O120.1 (7)N2—C10—C15—C14177.3 (5)
C1—C2—C7—O1162.7 (5)C11—C10—C15—C142.5 (7)
C3—C2—C7—C8159.0 (5)C12—C11—C16—O5160.7 (5)
C1—C2—C7—C818.2 (7)C10—C11—C16—O518.7 (8)
O1—C7—C8—N1178.8 (4)C12—C11—C16—N319.5 (7)
C2—C7—C8—N12.1 (7)C10—C11—C16—N3161.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.821.852.569 (5)145
N2—H2···O50.861.922.607 (5)136
N2—H2···N10.862.282.728 (5)113
N3—H3A···O5i0.862.222.941 (6)141
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H15N3O5S
Mr373.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.1377 (6), 7.0515 (6), 29.069 (2)
β (°) 96.502 (3)
V3)1657.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.39 × 0.25 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.915, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
16109, 3753, 3011
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.213, 1.09
No. of reflections3753
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.40

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.82001.85002.569 (5)145.00
N2—H2···O50.86001.92002.607 (5)136.00
N2—H2···N10.86002.28002.728 (5)113.00
N3—H3A···O5i0.86002.22002.941 (6)141.00
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to the PCSIR Laboratories Complex, Lahore, for the provision of facilities necessary to complete this work.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett. 14, 1035–1038.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBraun, J. (1923). Chem. Ber. 56, 2332–2343.  CrossRef Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948–2951.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ali, M., Zia-ur-Rehman, M., Sharif, S. & Tizzard, G. J. (2009). Acta Cryst. E65, o900–o901.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79–84.  PubMed Web of Science Google Scholar
First citationWeast, R. C., Astle, M. J. & Beyer, W. H. (1984). Handbook of Chemistry and Physics, 65th ed. Boca Raton, Florida: CRC Press.  Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26,1771–1775.  CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Ahmad, S. (2007). Acta Cryst. E63, o900–o901.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds