metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di-μ-thio­cyanato-κ2N:S;κ2S:N-bis­­[2-(1H-1,2,3-triazol-1-yl-κN3)pyra­zine]cadmium(II)]

aDepartment of Chemistry, Xinzhou Teachers' University, Shanxi, Xinzhou 034000, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: zhaominggen1957@yahoo.com.cn

(Received 14 July 2009; accepted 8 September 2009; online 12 September 2009)

In the title two-dimensional coordination polymer, [Cd(NCS)2(C6H5N5)2]n, the CdII ion (site symmetry [\overline1]) is coordinated by two N atoms from two 2-(1H-1,2,3-triazol-1-yl)pyrazine ligands and two N and two S atoms from four thio­cyanate anions. The N—Cd bond lengths range from 2.323 (2) to 2.3655 (19) Å and the S—Cd bond length is 2.7117 (7) Å. The associated cisoid angles vary from 84.99 (7) to 95.01 (7)°, indicating that the CdII ion assumes a distorted octa­hedral geometry. In the complex, each thio­cyanate anion functions as a bridging ligand, linking adjacent CdII ions with a separation of 6.4919 (6) Å, resulting in the formation of a two-dimensional sheet structure in the bc plane.

Related literature

For a related crystal structure, see: Yang & Shi (2008[Yang, L. Y. & Shi, J. M. (2008). Acta Cryst. E64, m1387.]). For the synthesis of CdII complexes with thio­cyanate anions and pyrazine derivatives as mixed bridging ligands, see: Li et al. (2008[Li, H., Xu, H. Y., Zhang, S. G. & Shi, J. M. (2008). J. Coord. Chem. 61, 2807-2813.]); Shi et al. (2007[Shi, J. M., Zhang, X., Xu, H. Y., Wu, C. J. & Liu, L. D. (2007). J. Coord. Chem. 60, 647-654.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCS)2(C6H5N5)2]

  • Mr = 522.86

  • Monoclinic, P 21 /c

  • a = 12.5038 (15) Å

  • b = 10.7240 (13) Å

  • c = 7.3196 (9) Å

  • β = 106.476 (2)°

  • V = 941.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 298 K

  • 0.24 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.728, Tmax = 0.806

  • 5139 measured reflections

  • 1923 independent reflections

  • 1735 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.064

  • S = 1.03

  • 1923 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond angless (°)

N6i—Cd1—N1 84.99 (7)
N6ii—Cd1—N1 95.01 (7)
N6ii—Cd1—S1iii 91.07 (6)
N1—Cd1—S1iii 94.56 (5)
N6ii—Cd1—S1 88.93 (6)
N1—Cd1—S1 85.44 (5)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+2, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-(1H-1,2,3-triazol-1-yl)pyrazine is similar to 2-(pyrazol-1-yl)pyrazine (Yang & Shi 2008) in structure and therefore it should act as a bridging ligand. Our interest in synthesizing CdII complexes (Shi et al., 2007; Li et al., 2008) with thiocyanate anions and derivatives of pyrazine as mixed bridging ligands resulted in us selecting thiocyanato and 2-(1H-1,2,3-triazol-1-yl)pyrazine as ligands, but only the title complex was obtained, in which 2-(1H-1,2,3-triazol-1-yl)pyrazine only functions as a terminal ligand. Herein we report the crystal structure of the title complex.

The asymmetric unit and symmetry-related fragments of (I) are shown in Fig. 1, and Fig.1 and Table 1 reveal that Cd1 atom is in a distorted octahedral CdN4S2 coordination geometry. In the crystal each CdII ion is surrounded by four other symmetry-related CdII ions with separation with 6.4919 (6) Å and the adjacent CdII ions were bridged by one thiocyanato anions and it forms a two-dimensional sheet on bc plane as shown in Fig. 2. 2-(1H-1,2,3-triazol-1-yl)pyrazine only acts as a monodentate ligand.

Related literature top

For a related crystal structure, see: Yang & Shi (2008). For the synthesis of CdII complexes with thiocyanate anions and pyrazine derivatives as mixed bridging ligands, see: Li et al. (2008); Shi et al. (2007).

Experimental top

An 8 ml methanol solution of 2-(1H-1,2,3-triazol-1-yl)pyrazine (0.0401 g, 0.272 mmol), 5 ml water solution of Cd(ClO4)2.6H2O (0.1120 g, 0.267 mmol) and 5 ml water solution of NaSCN (0.0435 g, 0.537 mmol) were mixed together and stirred for a few minutes. The colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for ten days.

Refinement top

All H atoms were placed in calculated positions and refined as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination structure of (I) showing the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) -x, y - 1/2, -z + 1/2 (ii) -x, -y + 2, -z (iii) x, -y + 5/2, z - 1/2 (iv) -x, y + 1/2, -z - 1/2 (v) -x, y - 1/2, -z - 1/2 (iv) -x, y + 1/2, -z + 1/2]
[Figure 2] Fig. 2. Unit cell and the part of the two-dimensional sheet on bc plane.
Poly[di-µ-thiocyanato-κ2N:S;κ2S:N-bis[2-(1H-1,2,3-triazol-1-yl-κN3)pyrazine]cadmium(II)] top
Crystal data top
[Cd(NCS)2(C6H5N5)2]F(000) = 516
Mr = 522.86Dx = 1.845 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3160 reflections
a = 12.5038 (15) Åθ = 2.6–28.0°
b = 10.7240 (13) ŵ = 1.41 mm1
c = 7.3196 (9) ÅT = 298 K
β = 106.476 (2)°Block, colorless
V = 941.2 (2) Å30.24 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
1923 independent reflections
Radiation source: fine-focus sealed tube1735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.728, Tmax = 0.806k = 1312
5139 measured reflectionsl = 69
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0289P)2 + 0.6077P]
where P = (Fo2 + 2Fc2)/3
1923 reflections(Δ/σ)max = 0.001
133 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cd(NCS)2(C6H5N5)2]V = 941.2 (2) Å3
Mr = 522.86Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.5038 (15) ŵ = 1.41 mm1
b = 10.7240 (13) ÅT = 298 K
c = 7.3196 (9) Å0.24 × 0.18 × 0.16 mm
β = 106.476 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1923 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1735 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.806Rint = 0.023
5139 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.03Δρmax = 0.55 e Å3
1923 reflectionsΔρmin = 0.34 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1593 (2)0.7435 (2)0.0075 (4)0.0390 (6)
H10.09800.69040.02250.047*
C20.2671 (2)0.7082 (2)0.0439 (4)0.0405 (6)
H20.29510.62780.04410.049*
C30.44202 (19)0.8353 (2)0.1282 (3)0.0348 (5)
C40.6101 (2)0.7616 (3)0.1322 (4)0.0521 (7)
H40.65550.69870.10830.063*
C50.6582 (2)0.8710 (3)0.2116 (4)0.0530 (7)
H50.73470.88170.23500.064*
C60.4896 (2)0.9434 (3)0.2156 (5)0.0506 (7)
H60.44461.00410.24680.061*
C70.08801 (19)1.2249 (2)0.3671 (3)0.0331 (5)
Cd10.00001.00000.00000.03129 (10)
N10.15559 (16)0.86932 (18)0.0222 (3)0.0370 (5)
N20.25664 (17)0.91457 (18)0.0669 (3)0.0393 (5)
N30.32500 (16)0.81662 (17)0.0798 (3)0.0336 (4)
N40.50015 (18)0.7423 (2)0.0879 (4)0.0464 (5)
N50.5982 (2)0.9623 (3)0.2560 (5)0.0615 (7)
N60.07295 (19)1.32994 (19)0.3793 (3)0.0452 (5)
S10.11190 (7)1.07527 (6)0.35667 (11)0.0530 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0328 (13)0.0276 (11)0.0548 (16)0.0003 (9)0.0097 (11)0.0064 (11)
C20.0363 (13)0.0268 (11)0.0566 (16)0.0025 (10)0.0104 (12)0.0060 (11)
C30.0333 (12)0.0363 (12)0.0350 (12)0.0027 (10)0.0098 (10)0.0011 (10)
C40.0379 (15)0.0618 (18)0.0593 (19)0.0058 (13)0.0181 (13)0.0065 (15)
C50.0335 (14)0.0681 (19)0.0564 (18)0.0022 (13)0.0113 (13)0.0008 (15)
C60.0370 (14)0.0413 (15)0.070 (2)0.0015 (12)0.0094 (13)0.0099 (14)
C70.0310 (12)0.0315 (12)0.0370 (13)0.0020 (9)0.0097 (10)0.0056 (10)
Cd10.02776 (14)0.01935 (13)0.04655 (17)0.00164 (8)0.01019 (11)0.00206 (9)
N10.0321 (10)0.0283 (10)0.0496 (13)0.0032 (8)0.0098 (9)0.0009 (9)
N20.0340 (11)0.0265 (10)0.0578 (14)0.0039 (8)0.0134 (10)0.0011 (9)
N30.0311 (10)0.0274 (9)0.0415 (11)0.0041 (8)0.0087 (8)0.0024 (8)
N40.0379 (12)0.0450 (12)0.0575 (15)0.0042 (10)0.0157 (10)0.0089 (11)
N50.0397 (14)0.0541 (14)0.085 (2)0.0095 (12)0.0082 (13)0.0145 (15)
N60.0462 (13)0.0323 (11)0.0571 (14)0.0036 (9)0.0145 (11)0.0081 (10)
S10.0712 (5)0.0266 (3)0.0485 (4)0.0086 (3)0.0037 (3)0.0046 (3)
Geometric parameters (Å, º) top
C1—C21.352 (3)C6—N51.322 (4)
C1—N11.355 (3)C6—H60.9300
C1—H10.9300C7—N61.150 (3)
C2—N31.356 (3)C7—S11.638 (2)
C2—H20.9300Cd1—N6i2.323 (2)
C3—N41.316 (3)Cd1—N6ii2.323 (2)
C3—C61.375 (4)Cd1—N12.3655 (19)
C3—N31.419 (3)Cd1—N1iii2.3655 (19)
C4—N41.336 (4)Cd1—S1iii2.7117 (7)
C4—C51.370 (4)Cd1—S12.7117 (7)
C4—H40.9300N1—N21.306 (3)
C5—N51.328 (4)N2—N31.341 (3)
C5—H50.9300N6—Cd1iv2.323 (2)
C2—C1—N1108.6 (2)N6ii—Cd1—N1iii84.99 (7)
C2—C1—H1125.7N1—Cd1—N1iii180.0
N1—C1—H1125.7N6i—Cd1—S1iii88.93 (6)
C1—C2—N3104.2 (2)N6ii—Cd1—S1iii91.07 (6)
C1—C2—H2127.9N1—Cd1—S1iii94.56 (5)
N3—C2—H2127.9N1iii—Cd1—S1iii85.44 (5)
N4—C3—C6123.3 (2)N6i—Cd1—S191.07 (6)
N4—C3—N3115.7 (2)N6ii—Cd1—S188.93 (6)
C6—C3—N3121.0 (2)N1—Cd1—S185.44 (5)
N4—C4—C5122.2 (3)N1iii—Cd1—S194.56 (5)
N4—C4—H4118.9S1iii—Cd1—S1180.0
C5—C4—H4118.9N2—N1—C1109.69 (19)
N5—C5—C4121.6 (3)N2—N1—Cd1121.04 (14)
N5—C5—H5119.2C1—N1—Cd1129.10 (16)
C4—C5—H5119.2N1—N2—N3106.19 (18)
N5—C6—C3121.0 (3)N2—N3—C2111.33 (19)
N5—C6—H6119.5N2—N3—C3119.93 (19)
C3—C6—H6119.5C2—N3—C3128.7 (2)
N6—C7—S1178.2 (3)C3—N4—C4115.1 (2)
N6i—Cd1—N6ii180.0C6—N5—C5116.6 (3)
N6i—Cd1—N184.99 (7)C7—N6—Cd1iv152.8 (2)
N6ii—Cd1—N195.01 (7)C7—S1—Cd1106.59 (9)
N6i—Cd1—N1iii95.01 (7)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+5/2, z1/2; (iii) x, y+2, z; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C6H5N5)2]
Mr522.86
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.5038 (15), 10.7240 (13), 7.3196 (9)
β (°) 106.476 (2)
V3)941.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.24 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.728, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
5139, 1923, 1735
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.03
No. of reflections1923
No. of parameters133
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.34

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N6i2.323 (2)Cd1—S12.7117 (7)
Cd1—N12.3655 (19)
N6i—Cd1—N184.99 (7)N1—Cd1—S1iii94.56 (5)
N6ii—Cd1—N195.01 (7)N6ii—Cd1—S188.93 (6)
N6ii—Cd1—S1iii91.07 (6)N1—Cd1—S185.44 (5)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+5/2, z1/2; (iii) x, y+2, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H., Xu, H. Y., Zhang, S. G. & Shi, J. M. (2008). J. Coord. Chem. 61, 2807–2813.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. M., Zhang, X., Xu, H. Y., Wu, C. J. & Liu, L. D. (2007). J. Coord. Chem. 60, 647–654.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, L. Y. & Shi, J. M. (2008). Acta Cryst. E64, m1387.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds