metal-organic compounds
Potassium 2-(N-hydroxycarbamoyl)acetate monohydrate
aKyiv National University of Construction and Architecture, Department of Chemistry, Povitroflotsky Ave., 31, 03680 Kiev, Ukraine, bNational Medical University, Department of General Chemistry, Volodymyrska str. 13, 010004 Kiev, Ukraine, cNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kiev, Ukraine, dFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie str., 50-383 Wrocław, Poland, and eKarakalpakian University, Department of Chemistry, Universitet Keshesi 1, 742012 Nukus, Uzbekistan
*Correspondence e-mail: turgiskend@freemail.ru
The +·C3H4NO4−·H2O, consists of potassium cations, monoanions of 2-carboxyacetohydroxamic acid [namely 2-(N-hydroxycarbamoyl)acetate] and solvent water molecules. The elements of the structure are united in a three-dimensional network by numerous K⋯O coordinate bonds and O—H⋯O and N—H⋯O hydrogen bonds. The coordination sphere of the K+ ions may be described as a distorted double capped octahedron. Bond lengths and angles are similar to those in related compounds.
of the title compound, KRelated literature
For background to et al. (1962); Hershko et al. (1992); Ghio et al. (1992); Shao et al. (2004). For as versatile bridging ligands, see: Bodwin et al. (2001); Cutland-Van Noord et al. (2002). For related structures, see: Golenya et al. (2007); Gumienna-Kontecka et al. (2007); Wörl et al. (2005). For K—O bond lengths, see: Świątek-Kozłowska et al. (2000); Mokhir et al. (2002).
in biological and coordination chemistry, see: KaczkaExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809038434/bv2123sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809038434/bv2123Isup2.hkl
I was obtained as white powder precipitate by addition of 1 equiv. of KOH (1 M aqueous solution) to warm solution of 2-carboxyacetohydroxamic acid (1.19 g, 10 mmol) in water (40 ml) with consequent reduction in volume of the obtained solution. Single crystals suitable for X-ray analysis were grown by slow isothermal evaporation of aqueous solution at room temperature. Anal. For C3H6NO5K (175.18) calcd.: C - 20.57, H - 3.45, N - 8.00. Found: C - 20.7, H - 3.5, N - 7.8. - IR (cm-1): 1062 (ν(N—O)), 1380 (νs(COO-)), 1580 (νas(COO-)), 1672 (ν(C=O) Amide I).
The O—H and N—H H atoms were located from the difference Fourier map and refined isotropically. The methylene H atoms were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.975–0.98 Å, and Uiso = 1.2 Ueq(parent atom).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).K+·C3H4NO4−·H2O | F(000) = 360 |
Mr = 175.19 | Dx = 1.826 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 567 reflections |
a = 7.457 (1) Å | θ = 3.5–27.5° |
b = 13.002 (3) Å | µ = 0.80 mm−1 |
c = 6.816 (1) Å | T = 100 K |
β = 105.41 (3)° | Needle, colourless |
V = 637.1 (2) Å3 | 0.25 × 0.20 × 0.12 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 1498 independent reflections |
Radiation source: fine-focus sealed tube | 1398 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 28.4°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | h = −9→9 |
Tmin = 0.829, Tmax = 0.914 | k = −17→17 |
3974 measured reflections | l = −6→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0348P)2 + 0.2753P] where P = (Fo2 + 2Fc2)/3 |
1498 reflections | (Δ/σ)max < 0.001 |
107 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
K+·C3H4NO4−·H2O | V = 637.1 (2) Å3 |
Mr = 175.19 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.457 (1) Å | µ = 0.80 mm−1 |
b = 13.002 (3) Å | T = 100 K |
c = 6.816 (1) Å | 0.25 × 0.20 × 0.12 mm |
β = 105.41 (3)° |
Bruker SMART CCD area-detector diffractometer | 1498 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | 1398 reflections with I > 2σ(I) |
Tmin = 0.829, Tmax = 0.914 | Rint = 0.025 |
3974 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.064 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.36 e Å−3 |
1498 reflections | Δρmin = −0.43 e Å−3 |
107 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
K1 | 0.50362 (4) | 0.64050 (2) | 0.09788 (4) | 0.01167 (10) | |
O1 | −0.30644 (12) | 0.82467 (7) | 0.01504 (14) | 0.0127 (2) | |
O2 | −0.09437 (12) | 0.92917 (7) | 0.20776 (13) | 0.01173 (19) | |
O3 | 0.27158 (12) | 0.76799 (7) | 0.24610 (13) | 0.01273 (19) | |
O4 | 0.46616 (12) | 0.93401 (7) | 0.18090 (13) | 0.0122 (2) | |
O1W | 0.77186 (13) | 0.51272 (8) | 0.03917 (15) | 0.0155 (2) | |
N1 | 0.28881 (15) | 0.90970 (9) | 0.06042 (16) | 0.0110 (2) | |
C1 | −0.14337 (17) | 0.85843 (9) | 0.07756 (18) | 0.0091 (2) | |
C2 | 0.00201 (17) | 0.81466 (10) | −0.02077 (18) | 0.0112 (2) | |
H2A | −0.0220 | 0.7419 | −0.0464 | 0.013* | |
H2B | −0.0110 | 0.8482 | −0.1510 | 0.013* | |
C3 | 0.19948 (16) | 0.82835 (10) | 0.10799 (18) | 0.0096 (2) | |
H4O | 0.543 (3) | 0.8999 (18) | 0.124 (3) | 0.031 (5)* | |
H1N | 0.243 (3) | 0.9497 (15) | −0.027 (3) | 0.024 (5)* | |
H1W | 0.863 (3) | 0.4904 (18) | 0.125 (3) | 0.036 (6)* | |
H2W | 0.807 (3) | 0.5327 (18) | −0.062 (4) | 0.043 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.01153 (15) | 0.01230 (16) | 0.01062 (15) | 0.00162 (9) | 0.00197 (10) | −0.00076 (9) |
O1 | 0.0095 (4) | 0.0153 (4) | 0.0134 (4) | −0.0009 (3) | 0.0029 (3) | −0.0024 (3) |
O2 | 0.0112 (4) | 0.0130 (4) | 0.0108 (4) | 0.0004 (3) | 0.0024 (3) | −0.0031 (3) |
O3 | 0.0131 (4) | 0.0140 (4) | 0.0112 (4) | 0.0013 (3) | 0.0034 (3) | 0.0021 (3) |
O4 | 0.0078 (4) | 0.0165 (5) | 0.0118 (4) | −0.0021 (3) | 0.0020 (3) | −0.0035 (3) |
O1W | 0.0120 (4) | 0.0218 (5) | 0.0130 (5) | 0.0038 (4) | 0.0041 (4) | 0.0064 (4) |
N1 | 0.0096 (5) | 0.0121 (5) | 0.0097 (5) | 0.0001 (4) | −0.0002 (4) | 0.0006 (4) |
C1 | 0.0103 (5) | 0.0096 (6) | 0.0070 (5) | 0.0016 (4) | 0.0018 (4) | 0.0026 (4) |
C2 | 0.0104 (5) | 0.0133 (6) | 0.0099 (5) | −0.0001 (4) | 0.0031 (4) | −0.0029 (4) |
C3 | 0.0096 (5) | 0.0113 (6) | 0.0092 (5) | 0.0009 (4) | 0.0047 (4) | −0.0028 (4) |
K1—O1W | 2.7105 (11) | O4—N1 | 1.3951 (14) |
K1—O3 | 2.7734 (10) | O4—H4O | 0.89 (2) |
K1—O3i | 2.8202 (12) | O1W—H1W | 0.82 (2) |
K1—O1Wii | 2.8358 (12) | O1W—H2W | 0.84 (3) |
K1—O1iii | 2.8558 (12) | N1—C3 | 1.3351 (17) |
K1—O1iv | 2.9128 (11) | N1—H1N | 0.79 (2) |
K1—O4i | 2.9448 (10) | C1—C2 | 1.5279 (17) |
K1—O4v | 3.0580 (11) | C2—C3 | 1.5111 (17) |
O1—C1 | 1.2560 (15) | C2—H2A | 0.9700 |
O2—C1 | 1.2628 (15) | C2—H2B | 0.9700 |
O3—C3 | 1.2337 (16) | ||
O1W—K1—O3 | 167.55 (3) | O3i—K1—O4v | 137.54 (3) |
O1W—K1—O3i | 116.31 (3) | O1Wii—K1—O4v | 59.85 (3) |
O3—K1—O3i | 75.90 (2) | O1iii—K1—O4v | 72.32 (3) |
O1W—K1—O1Wii | 91.10 (3) | O1iv—K1—O4v | 147.29 (3) |
O3—K1—O1Wii | 94.15 (3) | O4i—K1—O4v | 99.36 (3) |
O3i—K1—O1Wii | 77.83 (4) | N1—O4—H4O | 104.5 (13) |
O1W—K1—O1iii | 93.09 (4) | H1W—O1W—H2W | 108 (2) |
O3—K1—O1iii | 74.63 (3) | C3—N1—O4 | 119.52 (10) |
O3i—K1—O1iii | 144.05 (3) | C3—N1—H1N | 124.0 (14) |
O1Wii—K1—O1iii | 124.30 (3) | O4—N1—H1N | 116.1 (14) |
O1W—K1—O1iv | 93.40 (3) | O1—C1—O2 | 124.49 (11) |
O3—K1—O1iv | 87.81 (3) | O1—C1—C2 | 117.18 (11) |
O3i—K1—O1iv | 73.05 (3) | O2—C1—C2 | 118.23 (11) |
O1Wii—K1—O1iv | 149.40 (3) | C3—C2—C1 | 113.38 (10) |
O1iii—K1—O1iv | 85.67 (3) | C3—C2—H2A | 108.9 |
O1W—K1—O4i | 62.64 (4) | C1—C2—H2A | 108.9 |
O3—K1—O4i | 129.78 (3) | C3—C2—H2B | 108.9 |
O3i—K1—O4i | 55.86 (3) | C1—C2—H2B | 108.9 |
O1Wii—K1—O4i | 64.93 (3) | H2A—C2—H2B | 107.7 |
O1iii—K1—O4i | 155.21 (3) | O3—C3—N1 | 123.01 (11) |
O1iv—K1—O4i | 90.56 (3) | O3—C3—C2 | 121.88 (11) |
O1W—K1—O4v | 64.79 (3) | N1—C3—C2 | 115.11 (11) |
O3—K1—O4v | 108.45 (3) | ||
O1—C1—C2—C3 | −159.16 (11) | O4—N1—C3—C2 | 174.68 (10) |
O2—C1—C2—C3 | 24.31 (15) | C1—C2—C3—O3 | 83.28 (14) |
O4—N1—C3—O3 | −5.58 (18) | C1—C2—C3—N1 | −96.98 (13) |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z; (iii) x+1, −y+3/2, z+1/2; (iv) x+1, y, z; (v) −x+1, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4O···O1iv | 0.89 (2) | 1.79 (2) | 2.6820 (13) | 177 (2) |
N1—H1N···O2vi | 0.79 (2) | 2.12 (2) | 2.9025 (16) | 166.7 (18) |
O1W—H1W···O2v | 0.82 (2) | 1.97 (2) | 2.7811 (15) | 171 (2) |
O1W—H2W···O2vii | 0.84 (3) | 1.97 (3) | 2.8046 (14) | 175 (2) |
Symmetry codes: (iv) x+1, y, z; (v) −x+1, y−1/2, −z+1/2; (vi) −x, −y+2, −z; (vii) x+1, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | K+·C3H4NO4−·H2O |
Mr | 175.19 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.457 (1), 13.002 (3), 6.816 (1) |
β (°) | 105.41 (3) |
V (Å3) | 637.1 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.80 |
Crystal size (mm) | 0.25 × 0.20 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2001) |
Tmin, Tmax | 0.829, 0.914 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3974, 1498, 1398 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.064, 1.10 |
No. of reflections | 1498 |
No. of parameters | 107 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.36, −0.43 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4O···O1i | 0.89 (2) | 1.79 (2) | 2.6820 (13) | 177 (2) |
N1—H1N···O2ii | 0.79 (2) | 2.12 (2) | 2.9025 (16) | 166.7 (18) |
O1W—H1W···O2iii | 0.82 (2) | 1.97 (2) | 2.7811 (15) | 171 (2) |
O1W—H2W···O2iv | 0.84 (3) | 1.97 (3) | 2.8046 (14) | 175 (2) |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y+2, −z; (iii) −x+1, y−1/2, −z+1/2; (iv) x+1, −y+3/2, z−1/2. |
Acknowledgements
The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/42–2008).
References
Bodwin, J. J., Cutland, A. D., Malkani, R. G. & Pecoraro, V. L. (2001). Coord. Chem. Rev. 216–217, 489–512. Web of Science CrossRef CAS Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cutland-Van Noord, A. D., Kampf, J. W. & Pecoraro, V. L. (2002). Angew. Chem. Int. Ed. 41, 4667–4670. Web of Science CSD CrossRef CAS Google Scholar
Ghio, A. J., Kennedy, T. P., Whorton, R. A., Crumbliss, A. L., Hatch, G. E. & Hoidal, J. R. (1992). Am. J. Physiol. 263, 511–518. Google Scholar
Golenya, I. A., Haukka, M., Fritsky, I. O. & Gumienna-Kontecka, E. (2007). Acta Cryst. E63, o1515–o1517. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805. Web of Science CSD CrossRef CAS Google Scholar
Hershko, C., Gordeuk, V. R., Thuma, P. E., Thenacho, E. N., Spira, D. T., Hider, R. C., Peto, T. E. A. & Drittenham, G. M. (1992). J. Inorg. Biochem. 47, 267–277. CrossRef PubMed CAS Web of Science Google Scholar
Kaczka, E. A., Gitterman, C. O., Dulaney, E. L. & Folkers, K. (1962). Biochemistry, 1, 340–343. CrossRef PubMed CAS Web of Science Google Scholar
Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121. Web of Science CSD CrossRef CAS Google Scholar
Shao, Y., Gao, Z., Marks, P. A. & Jiang, X. (2004). Proc. Natl Acad. Sci. USA, 101, 18030–18035. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068. Google Scholar
Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. pp. 759–765. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydroxamic acids represent an important class of chelating agents and enzyme inhibitors (Kaczka et al., 1962; Hershko et al., 1992; Ghio et al., 1992; Shao et al., 2004). In recent years hydroxamic acids have also been widely used in coordination chemistry as versatile bridging ligands able to produce multinuclear compounds containing a large number of metal ions, such as metallacrowns (Bodwin et al., 2001; Cutland-Van Noord et al., 2002). Recently we reported that 2-carboxyacetohydroxamic acid is an efficient ligand for obtaining 12-metallacrown-4 complexes with copper(II) ions which can be used as pentanuclear building blocks for preparation of one-dimensional coordination polymers (Gumienna-Kontecka et al., 2007). The present investigation is aimed at the study of the molecular structure of the title compound (I) which is a suitable ligand for preparation of polynuclear complexes and coordination polymers.
The atom-numbering scheme of compound (I) is shown in Fig. 1. The crystal structure of (I) is ionic and consists of potassium cations, monoanions of 2-carboxyacetohydroxamic acid and solvate water molecules. The elements of the structure are united in three-dimensional-network by numerous K···O coordination bonds and the O—H···O and N—H···O hydrogen bonds (Fig. 2,. Table 1).
The residue of 2-carboxyacetohydroxamic acid is a monoanion bearing the deprotonated carboxylic group with the hydroxamic function remaining protonated. The anion exhibits C—O, N—O, C—N bond lengths which are typical for carboxylic and hydroxamic groups (Wörl et al., 2005, Golenya et al., 2007). The conformation of monoanion of 2-carboxyacetohydroxamic acid is significantly non-planar due to the presence of the flexible C—CH2—C moiety uniting two planar hydroxamic and carboxylic fragments. The mentioned groups are disposed nearly perpendicularly; the dihedral angle between their planes is equal to 86.37 (5)o.
The potassium cation exhibits coordination number 8, and its coordination polyhedron can be considered as severely distorted double capped octahedron. Its coordination environment is formed by two solvate water molecules and six oxygen atoms of monoanion of 2-carboxyacetohydroxamic acid belonging to the deprotonated carboxylic groups (O(1)) and both oxygen atoms of the hydroxamic functions(O(3) and O(4)) belonging to the different translational anions. Each potassium cation has in its coordination sphere the oxygen atoms belonging to five different translational monoanions of 2-carboxyacetohydroxamic acid. The K—O bond lengths lie in the range 2.711 (1) - 3.058 (1) Å which is normal for potassium cations (Świątek-Kozłowska et al., 2000; Mokhir et al., 2002).