metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1254-m1255

Potassium 2-(N-hy­droxy­carbamo­yl)acetate monohydrate

aKyiv National University of Construction and Architecture, Department of Chemistry, Povitroflotsky Ave., 31, 03680 Kiev, Ukraine, bNational Medical University, Department of General Chemistry, Volodymyrska str. 13, 010004 Kiev, Ukraine, cNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kiev, Ukraine, dFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie str., 50-383 Wrocław, Poland, and eKarakalpakian University, Department of Chemistry, Universitet Keshesi 1, 742012 Nukus, Uzbekistan
*Correspondence e-mail: turgiskend@freemail.ru

(Received 19 July 2009; accepted 22 September 2009; online 30 September 2009)

The crystal structure of the title compound, K+·C3H4NO4·H2O, consists of potassium cations, monoanions of 2-carboxy­acetohydroxamic acid [namely 2-(N-hydroxy­carbamo­yl)acetate] and solvent water mol­ecules. The elements of the structure are united in a three-dimensional network by numerous K⋯O coordinate bonds and O—H⋯O and N—H⋯O hydrogen bonds. The coordination sphere of the K+ ions may be described as a distorted double capped octa­hedron. Bond lengths and angles are similar to those in related compounds.

Related literature

For background to hydroxamic acids in biological and coordination chemistry, see: Kaczka et al. (1962[Kaczka, E. A., Gitterman, C. O., Dulaney, E. L. & Folkers, K. (1962). Biochemistry, 1, 340-343.]); Hershko et al. (1992[Hershko, C., Gordeuk, V. R., Thuma, P. E., Thenacho, E. N., Spira, D. T., Hider, R. C., Peto, T. E. A. & Drittenham, G. M. (1992). J. Inorg. Biochem. 47, 267-277.]); Ghio et al. (1992[Ghio, A. J., Kennedy, T. P., Whorton, R. A., Crumbliss, A. L., Hatch, G. E. & Hoidal, J. R. (1992). Am. J. Physiol. 263, 511-518.]); Shao et al. (2004[Shao, Y., Gao, Z., Marks, P. A. & Jiang, X. (2004). Proc. Natl Acad. Sci. USA, 101, 18030-18035.]). For hydroxamic acids as versatile bridging ligands, see: Bodwin et al. (2001[Bodwin, J. J., Cutland, A. D., Malkani, R. G. & Pecoraro, V. L. (2001). Coord. Chem. Rev. 216-217, 489-512.]); Cutland-Van Noord et al. (2002[Cutland-Van Noord, A. D., Kampf, J. W. & Pecoraro, V. L. (2002). Angew. Chem. Int. Ed. 41, 4667-4670.]). For related structures, see: Golenya et al. (2007[Golenya, I. A., Haukka, M., Fritsky, I. O. & Gumienna-Kontecka, E. (2007). Acta Cryst. E63, o1515-o1517.]); Gumienna-Kontecka et al. (2007[Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798-1805.]); Wörl et al. (2005[Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. pp. 759-765.]). For K—O bond lengths, see: Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C3H4NO4·H2O

  • Mr = 175.19

  • Monoclinic, P 21 /c

  • a = 7.457 (1) Å

  • b = 13.002 (3) Å

  • c = 6.816 (1) Å

  • β = 105.41 (3)°

  • V = 637.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.829, Tmax = 0.914

  • 3974 measured reflections

  • 1498 independent reflections

  • 1398 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.064

  • S = 1.10

  • 1498 reflections

  • 107 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O1i 0.89 (2) 1.79 (2) 2.6820 (13) 177 (2)
N1—H1N⋯O2ii 0.79 (2) 2.12 (2) 2.9025 (16) 166.7 (18)
O1W—H1W⋯O2iii 0.82 (2) 1.97 (2) 2.7811 (15) 171 (2)
O1W—H2W⋯O2iv 0.84 (3) 1.97 (3) 2.8046 (14) 175 (2)
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+2, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydroxamic acids represent an important class of chelating agents and enzyme inhibitors (Kaczka et al., 1962; Hershko et al., 1992; Ghio et al., 1992; Shao et al., 2004). In recent years hydroxamic acids have also been widely used in coordination chemistry as versatile bridging ligands able to produce multinuclear compounds containing a large number of metal ions, such as metallacrowns (Bodwin et al., 2001; Cutland-Van Noord et al., 2002). Recently we reported that 2-carboxyacetohydroxamic acid is an efficient ligand for obtaining 12-metallacrown-4 complexes with copper(II) ions which can be used as pentanuclear building blocks for preparation of one-dimensional coordination polymers (Gumienna-Kontecka et al., 2007). The present investigation is aimed at the study of the molecular structure of the title compound (I) which is a suitable ligand for preparation of polynuclear complexes and coordination polymers.

The atom-numbering scheme of compound (I) is shown in Fig. 1. The crystal structure of (I) is ionic and consists of potassium cations, monoanions of 2-carboxyacetohydroxamic acid and solvate water molecules. The elements of the structure are united in three-dimensional-network by numerous K···O coordination bonds and the O—H···O and N—H···O hydrogen bonds (Fig. 2,. Table 1).

The residue of 2-carboxyacetohydroxamic acid is a monoanion bearing the deprotonated carboxylic group with the hydroxamic function remaining protonated. The anion exhibits C—O, N—O, C—N bond lengths which are typical for carboxylic and hydroxamic groups (Wörl et al., 2005, Golenya et al., 2007). The conformation of monoanion of 2-carboxyacetohydroxamic acid is significantly non-planar due to the presence of the flexible C—CH2—C moiety uniting two planar hydroxamic and carboxylic fragments. The mentioned groups are disposed nearly perpendicularly; the dihedral angle between their planes is equal to 86.37 (5)o.

The potassium cation exhibits coordination number 8, and its coordination polyhedron can be considered as severely distorted double capped octahedron. Its coordination environment is formed by two solvate water molecules and six oxygen atoms of monoanion of 2-carboxyacetohydroxamic acid belonging to the deprotonated carboxylic groups (O(1)) and both oxygen atoms of the hydroxamic functions(O(3) and O(4)) belonging to the different translational anions. Each potassium cation has in its coordination sphere the oxygen atoms belonging to five different translational monoanions of 2-carboxyacetohydroxamic acid. The K—O bond lengths lie in the range 2.711 (1) - 3.058 (1) Å which is normal for potassium cations (Świątek-Kozłowska et al., 2000; Mokhir et al., 2002).

Related literature top

For background to hydroxamic acids in biological and coordination chemistry, see: Kaczka et al. (1962); Hershko et al. (1992); Ghio et al. (1992); Shao et al. (2004). For hydroxamic acids as versatile bridging ligands, see: Bodwin et al. (2001); Cutland-Van Noord et al. (2002). For related structures, see: Golenya et al. (2007); Gumienna-Kontecka et al. (2007); Wörl et al. (2005). For K—O bond lengths, see: Świątek-Kozłowska et al. (2000); Mokhir et al. (2002).

Experimental top

I was obtained as white powder precipitate by addition of 1 equiv. of KOH (1 M aqueous solution) to warm solution of 2-carboxyacetohydroxamic acid (1.19 g, 10 mmol) in water (40 ml) with consequent reduction in volume of the obtained solution. Single crystals suitable for X-ray analysis were grown by slow isothermal evaporation of aqueous solution at room temperature. Anal. For C3H6NO5K (175.18) calcd.: C - 20.57, H - 3.45, N - 8.00. Found: C - 20.7, H - 3.5, N - 7.8. - IR (cm-1): 1062 (ν(N—O)), 1380 (νs(COO-)), 1580 (νas(COO-)), 1672 (ν(C=O) Amide I).

Refinement top

The O—H and N—H H atoms were located from the difference Fourier map and refined isotropically. The methylene H atoms were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.975–0.98 Å, and Uiso = 1.2 Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of compound (I), with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. The hydrogen bonding is shown by dashed lines [symmetry codes: (i) 1 + x, y, z; (ii) x, 1.5 - y, -1/2 + z; (iii) 1 + x, 1.5 - y, 1/2 + z; (iv)1 - x, 1 - y, - z; (v) 1 - x, -1/2 + y, 1/2 - z].
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
Potassium 2-(N-hydroxycarbamoyl)acetate monohydrate top
Crystal data top
K+·C3H4NO4·H2OF(000) = 360
Mr = 175.19Dx = 1.826 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 567 reflections
a = 7.457 (1) Åθ = 3.5–27.5°
b = 13.002 (3) ŵ = 0.80 mm1
c = 6.816 (1) ÅT = 100 K
β = 105.41 (3)°Needle, colourless
V = 637.1 (2) Å30.25 × 0.20 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1498 independent reflections
Radiation source: fine-focus sealed tube1398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 28.4°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 99
Tmin = 0.829, Tmax = 0.914k = 1717
3974 measured reflectionsl = 69
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.2753P]
where P = (Fo2 + 2Fc2)/3
1498 reflections(Δ/σ)max < 0.001
107 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
K+·C3H4NO4·H2OV = 637.1 (2) Å3
Mr = 175.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.457 (1) ŵ = 0.80 mm1
b = 13.002 (3) ÅT = 100 K
c = 6.816 (1) Å0.25 × 0.20 × 0.12 mm
β = 105.41 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1498 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1398 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.914Rint = 0.025
3974 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.36 e Å3
1498 reflectionsΔρmin = 0.43 e Å3
107 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.50362 (4)0.64050 (2)0.09788 (4)0.01167 (10)
O10.30644 (12)0.82467 (7)0.01504 (14)0.0127 (2)
O20.09437 (12)0.92917 (7)0.20776 (13)0.01173 (19)
O30.27158 (12)0.76799 (7)0.24610 (13)0.01273 (19)
O40.46616 (12)0.93401 (7)0.18090 (13)0.0122 (2)
O1W0.77186 (13)0.51272 (8)0.03917 (15)0.0155 (2)
N10.28881 (15)0.90970 (9)0.06042 (16)0.0110 (2)
C10.14337 (17)0.85843 (9)0.07756 (18)0.0091 (2)
C20.00201 (17)0.81466 (10)0.02077 (18)0.0112 (2)
H2A0.02200.74190.04640.013*
H2B0.01100.84820.15100.013*
C30.19948 (16)0.82835 (10)0.10799 (18)0.0096 (2)
H4O0.543 (3)0.8999 (18)0.124 (3)0.031 (5)*
H1N0.243 (3)0.9497 (15)0.027 (3)0.024 (5)*
H1W0.863 (3)0.4904 (18)0.125 (3)0.036 (6)*
H2W0.807 (3)0.5327 (18)0.062 (4)0.043 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01153 (15)0.01230 (16)0.01062 (15)0.00162 (9)0.00197 (10)0.00076 (9)
O10.0095 (4)0.0153 (4)0.0134 (4)0.0009 (3)0.0029 (3)0.0024 (3)
O20.0112 (4)0.0130 (4)0.0108 (4)0.0004 (3)0.0024 (3)0.0031 (3)
O30.0131 (4)0.0140 (4)0.0112 (4)0.0013 (3)0.0034 (3)0.0021 (3)
O40.0078 (4)0.0165 (5)0.0118 (4)0.0021 (3)0.0020 (3)0.0035 (3)
O1W0.0120 (4)0.0218 (5)0.0130 (5)0.0038 (4)0.0041 (4)0.0064 (4)
N10.0096 (5)0.0121 (5)0.0097 (5)0.0001 (4)0.0002 (4)0.0006 (4)
C10.0103 (5)0.0096 (6)0.0070 (5)0.0016 (4)0.0018 (4)0.0026 (4)
C20.0104 (5)0.0133 (6)0.0099 (5)0.0001 (4)0.0031 (4)0.0029 (4)
C30.0096 (5)0.0113 (6)0.0092 (5)0.0009 (4)0.0047 (4)0.0028 (4)
Geometric parameters (Å, º) top
K1—O1W2.7105 (11)O4—N11.3951 (14)
K1—O32.7734 (10)O4—H4O0.89 (2)
K1—O3i2.8202 (12)O1W—H1W0.82 (2)
K1—O1Wii2.8358 (12)O1W—H2W0.84 (3)
K1—O1iii2.8558 (12)N1—C31.3351 (17)
K1—O1iv2.9128 (11)N1—H1N0.79 (2)
K1—O4i2.9448 (10)C1—C21.5279 (17)
K1—O4v3.0580 (11)C2—C31.5111 (17)
O1—C11.2560 (15)C2—H2A0.9700
O2—C11.2628 (15)C2—H2B0.9700
O3—C31.2337 (16)
O1W—K1—O3167.55 (3)O3i—K1—O4v137.54 (3)
O1W—K1—O3i116.31 (3)O1Wii—K1—O4v59.85 (3)
O3—K1—O3i75.90 (2)O1iii—K1—O4v72.32 (3)
O1W—K1—O1Wii91.10 (3)O1iv—K1—O4v147.29 (3)
O3—K1—O1Wii94.15 (3)O4i—K1—O4v99.36 (3)
O3i—K1—O1Wii77.83 (4)N1—O4—H4O104.5 (13)
O1W—K1—O1iii93.09 (4)H1W—O1W—H2W108 (2)
O3—K1—O1iii74.63 (3)C3—N1—O4119.52 (10)
O3i—K1—O1iii144.05 (3)C3—N1—H1N124.0 (14)
O1Wii—K1—O1iii124.30 (3)O4—N1—H1N116.1 (14)
O1W—K1—O1iv93.40 (3)O1—C1—O2124.49 (11)
O3—K1—O1iv87.81 (3)O1—C1—C2117.18 (11)
O3i—K1—O1iv73.05 (3)O2—C1—C2118.23 (11)
O1Wii—K1—O1iv149.40 (3)C3—C2—C1113.38 (10)
O1iii—K1—O1iv85.67 (3)C3—C2—H2A108.9
O1W—K1—O4i62.64 (4)C1—C2—H2A108.9
O3—K1—O4i129.78 (3)C3—C2—H2B108.9
O3i—K1—O4i55.86 (3)C1—C2—H2B108.9
O1Wii—K1—O4i64.93 (3)H2A—C2—H2B107.7
O1iii—K1—O4i155.21 (3)O3—C3—N1123.01 (11)
O1iv—K1—O4i90.56 (3)O3—C3—C2121.88 (11)
O1W—K1—O4v64.79 (3)N1—C3—C2115.11 (11)
O3—K1—O4v108.45 (3)
O1—C1—C2—C3159.16 (11)O4—N1—C3—C2174.68 (10)
O2—C1—C2—C324.31 (15)C1—C2—C3—O383.28 (14)
O4—N1—C3—O35.58 (18)C1—C2—C3—N196.98 (13)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y, z; (v) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1iv0.89 (2)1.79 (2)2.6820 (13)177 (2)
N1—H1N···O2vi0.79 (2)2.12 (2)2.9025 (16)166.7 (18)
O1W—H1W···O2v0.82 (2)1.97 (2)2.7811 (15)171 (2)
O1W—H2W···O2vii0.84 (3)1.97 (3)2.8046 (14)175 (2)
Symmetry codes: (iv) x+1, y, z; (v) x+1, y1/2, z+1/2; (vi) x, y+2, z; (vii) x+1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaK+·C3H4NO4·H2O
Mr175.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.457 (1), 13.002 (3), 6.816 (1)
β (°) 105.41 (3)
V3)637.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.25 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.829, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
3974, 1498, 1398
Rint0.025
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 1.10
No. of reflections1498
No. of parameters107
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.43

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.89 (2)1.79 (2)2.6820 (13)177 (2)
N1—H1N···O2ii0.79 (2)2.12 (2)2.9025 (16)166.7 (18)
O1W—H1W···O2iii0.82 (2)1.97 (2)2.7811 (15)171 (2)
O1W—H2W···O2iv0.84 (3)1.97 (3)2.8046 (14)175 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/42–2008).

References

First citationBodwin, J. J., Cutland, A. D., Malkani, R. G. & Pecoraro, V. L. (2001). Coord. Chem. Rev. 216–217, 489–512.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCutland-Van Noord, A. D., Kampf, J. W. & Pecoraro, V. L. (2002). Angew. Chem. Int. Ed. 41, 4667–4670.  Web of Science CSD CrossRef CAS Google Scholar
First citationGhio, A. J., Kennedy, T. P., Whorton, R. A., Crumbliss, A. L., Hatch, G. E. & Hoidal, J. R. (1992). Am. J. Physiol. 263, 511–518.  Google Scholar
First citationGolenya, I. A., Haukka, M., Fritsky, I. O. & Gumienna-Kontecka, E. (2007). Acta Cryst. E63, o1515–o1517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805.  Web of Science CSD CrossRef CAS Google Scholar
First citationHershko, C., Gordeuk, V. R., Thuma, P. E., Thenacho, E. N., Spira, D. T., Hider, R. C., Peto, T. E. A. & Drittenham, G. M. (1992). J. Inorg. Biochem. 47, 267–277.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKaczka, E. A., Gitterman, C. O., Dulaney, E. L. & Folkers, K. (1962). Biochemistry, 1, 340–343.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationShao, Y., Gao, Z., Marks, P. A. & Jiang, X. (2004). Proc. Natl Acad. Sci. USA, 101, 18030–18035.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationWörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. pp. 759–765.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1254-m1255
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds