organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,5-Di­chloro­phen­yl)-4-methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 20 July 2009; accepted 30 August 2009; online 5 September 2009)

In the crystal structure of the title compound, C13H11Cl2NO2S, the conformation of the N—C bond in the C—SO2—NH—C segment is gauche with respect to the SO bonds. The two benzene rings are tilted by 79.6 (1)° relative to each other. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur.

Related literature

For the preparation of the title compound, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]). For background literature, see: For a study of the effect of substituents on the crystal structures of N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o2190.], 2009a[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o877.],b[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o1219.]). For bond parameters in related aryl sulfonamides, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11Cl2NO2S

  • Mr = 316.19

  • Monoclinic, P 21 /n

  • a = 6.7388 (8) Å

  • b = 8.9627 (8) Å

  • c = 22.944 (2) Å

  • β = 91.801 (8)°

  • V = 1385.1 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.61 mm−1

  • T = 299 K

  • 0.42 × 0.35 × 0.13 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.140, Tmax = 0.482

  • 3363 measured reflections

  • 2424 independent reflections

  • 2049 reflections with I > 2σ(I)

  • Rint = 0.104

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.236

  • S = 1.11

  • 2424 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.87 (5) 2.02 (6) 2.888 (5) 176 (5)
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008; 2009a, b), in the present work, the crystal structure of 4-methyl-N-(3,5-dichlorophenyl)benzenesulfonamide (I) has been determined. The conformation of the N—C bond in the C—SO2—NH—C segment of the structure has "trans" and "gauche" torsions with respect to the SO bonds (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of 69.3 (4)° compared to the values of -51.6 (3)° and 68.3 (2)°, respectively, for 4-methyl-N-(phenyl)benzenesulfonamide (II)(Gowda et al., 2009b) and N-(3,5-dichlorophenyl)-benzenesulfonamide (III) (Gowda et al., 2008). The two benzene rings in (I) are tilted relative to each other by 79.6 (1)°, compared to the values of 68.4 (1)° for the compound II and 57.0 (1)° for III.

The other bond parameters in (I) are similar to those observed in (II) (Gowda et al., 2009b), (III) (Gowda et al., 2008), 4-methyl-N-(3,4-dimethylphenyl)benzenesulfonamide (Gowda et al., 2009a) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The packing of molecules via N—H···O(S) hydrogen bonds (Table 1) into supramolecular structure is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Shetty & Gowda (2005). For background literature, see: For a study of theeffect of substituents on the crystal structures of N-(aryl)-arylsulfonamides, see: Gowda et al. (2008, 2009a,b). For bond parameters in related aryl sulfonamides, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of toluene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-methylbenzenesulfonylchloride was treated with 3,5-dichloroaniline in the stoichiometric ratio and boiled for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant 4-methyl-N-(3,5-dichlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005). The prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and its position refined [N—H = 0.87 (5) Å]. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Two reflections (-5 1 9 and -3 2 11) were omitted from the refinement as a statistical analysis showed that they were anomalous.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(3,5-Dichlorophenyl)-4-methylbenzenesulfonamide top
Crystal data top
C13H11Cl2NO2SF(000) = 648
Mr = 316.19Dx = 1.516 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.7388 (8) Åθ = 3.9–18.2°
b = 8.9627 (8) ŵ = 5.61 mm1
c = 22.944 (2) ÅT = 299 K
β = 91.801 (8)°Prism, colourless
V = 1385.1 (2) Å30.42 × 0.35 × 0.13 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2049 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.104
Graphite monochromatorθmax = 66.9°, θmin = 3.9°
ω/2θ scansh = 72
Absorption correction: ψ scan
(North et al., 1968)
k = 100
Tmin = 0.140, Tmax = 0.482l = 2727
3363 measured reflections3 standard reflections every 120 min
2424 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.236H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.1586P)2 + 1.125P]
where P = (Fo2 + 2Fc2)/3
2424 reflections(Δ/σ)max = 0.011
176 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C13H11Cl2NO2SV = 1385.1 (2) Å3
Mr = 316.19Z = 4
Monoclinic, P21/nCu Kα radiation
a = 6.7388 (8) ŵ = 5.61 mm1
b = 8.9627 (8) ÅT = 299 K
c = 22.944 (2) Å0.42 × 0.35 × 0.13 mm
β = 91.801 (8)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2049 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.104
Tmin = 0.140, Tmax = 0.4823 standard reflections every 120 min
3363 measured reflections intensity decay: 1.0%
2424 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.236H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.48 e Å3
2424 reflectionsΔρmin = 0.64 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6639 (6)0.0125 (4)0.60350 (17)0.0403 (9)
C20.4841 (6)0.0772 (5)0.61451 (17)0.0442 (9)
H20.42150.13940.58720.053*
C30.3986 (6)0.0473 (5)0.66742 (18)0.0441 (9)
C40.4832 (7)0.0443 (5)0.70890 (18)0.0470 (10)
H40.42230.06360.74390.056*
C50.6627 (7)0.1064 (5)0.69595 (19)0.0496 (10)
C60.7556 (7)0.0807 (5)0.64425 (18)0.0454 (9)
H60.87710.12490.63690.054*
C70.9133 (6)0.3137 (4)0.54905 (17)0.0393 (9)
C81.1092 (6)0.3369 (5)0.53436 (18)0.0430 (9)
H81.16300.28450.50360.052*
C91.2229 (7)0.4380 (5)0.56558 (19)0.0495 (10)
H91.35440.45320.55600.059*
C101.1436 (8)0.5185 (5)0.6117 (2)0.0522 (11)
C110.9505 (8)0.4940 (6)0.62479 (19)0.0547 (11)
H110.89650.54660.65540.066*
C120.8329 (7)0.3936 (5)0.59400 (18)0.0476 (10)
H120.70100.37990.60340.057*
C131.2739 (10)0.6246 (7)0.6464 (2)0.0714 (15)
H13A1.29020.71520.62480.086*
H13B1.40140.57950.65400.086*
H13C1.21330.64680.68270.086*
N10.7620 (6)0.0309 (4)0.55009 (16)0.0467 (9)
H1N0.872 (8)0.020 (6)0.549 (2)0.056*
O10.8754 (5)0.1373 (3)0.46032 (12)0.0478 (8)
O20.5716 (4)0.2390 (4)0.50360 (13)0.0490 (7)
Cl10.17240 (18)0.13146 (17)0.68157 (5)0.0653 (5)
Cl20.7786 (3)0.22328 (19)0.74746 (6)0.0826 (6)
S10.76828 (14)0.18214 (11)0.51047 (4)0.0392 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (2)0.0334 (18)0.039 (2)0.0094 (16)0.0126 (16)0.0055 (15)
C20.051 (2)0.042 (2)0.040 (2)0.0025 (17)0.0062 (17)0.0030 (17)
C30.044 (2)0.045 (2)0.044 (2)0.0012 (16)0.0111 (17)0.0025 (18)
C40.061 (3)0.042 (2)0.038 (2)0.0064 (18)0.0116 (18)0.0019 (17)
C50.067 (3)0.039 (2)0.044 (2)0.0051 (19)0.0065 (19)0.0027 (18)
C60.053 (2)0.041 (2)0.043 (2)0.0065 (17)0.0083 (17)0.0036 (17)
C70.046 (2)0.039 (2)0.0330 (18)0.0042 (16)0.0065 (15)0.0040 (15)
C80.048 (2)0.041 (2)0.040 (2)0.0033 (17)0.0104 (17)0.0008 (17)
C90.052 (3)0.047 (2)0.049 (2)0.0016 (18)0.0036 (19)0.0065 (19)
C100.072 (3)0.040 (2)0.045 (2)0.001 (2)0.003 (2)0.0070 (19)
C110.078 (3)0.050 (2)0.037 (2)0.006 (2)0.008 (2)0.0056 (18)
C120.055 (3)0.046 (2)0.042 (2)0.0047 (18)0.0138 (18)0.0040 (18)
C130.089 (4)0.068 (3)0.056 (3)0.008 (3)0.014 (3)0.004 (3)
N10.055 (2)0.0387 (18)0.047 (2)0.0038 (15)0.0219 (17)0.0029 (15)
O10.0598 (18)0.0507 (17)0.0337 (14)0.0098 (13)0.0148 (12)0.0022 (12)
O20.0481 (17)0.0543 (18)0.0446 (16)0.0038 (13)0.0051 (12)0.0002 (14)
Cl10.0525 (7)0.0842 (9)0.0604 (7)0.0132 (6)0.0205 (5)0.0067 (6)
Cl20.1076 (12)0.0872 (10)0.0542 (8)0.0448 (9)0.0193 (7)0.0235 (7)
S10.0456 (6)0.0388 (6)0.0338 (6)0.0031 (4)0.0110 (4)0.0010 (4)
Geometric parameters (Å, º) top
C1—C21.374 (6)C8—H80.9300
C1—C61.384 (6)C9—C101.399 (7)
C1—N11.420 (5)C9—H90.9300
C2—C31.387 (5)C10—C111.362 (7)
C2—H20.9300C10—C131.506 (7)
C3—C41.368 (6)C11—C121.379 (7)
C3—Cl11.740 (4)C11—H110.9300
C4—C51.373 (6)C12—H120.9300
C4—H40.9300C13—H13A0.9600
C5—C61.378 (6)C13—H13B0.9600
C5—Cl21.746 (5)C13—H13C0.9600
C6—H60.9300N1—S11.633 (4)
C7—C121.380 (6)N1—H1N0.87 (5)
C7—C81.389 (6)O1—S11.435 (3)
C7—S11.753 (4)O2—S11.424 (3)
C8—C91.374 (6)
C2—C1—C6120.5 (4)C10—C9—H9119.5
C2—C1—N1123.1 (4)C11—C10—C9118.3 (4)
C6—C1—N1116.3 (4)C11—C10—C13122.0 (5)
C1—C2—C3118.2 (4)C9—C10—C13119.7 (5)
C1—C2—H2120.9C10—C11—C12121.9 (4)
C3—C2—H2120.9C10—C11—H11119.0
C4—C3—C2123.3 (4)C12—C11—H11119.0
C4—C3—Cl1118.6 (3)C11—C12—C7119.3 (4)
C2—C3—Cl1118.1 (3)C11—C12—H12120.4
C3—C4—C5116.3 (4)C7—C12—H12120.4
C3—C4—H4121.8C10—C13—H13A109.5
C5—C4—H4121.8C10—C13—H13B109.5
C4—C5—C6123.1 (4)H13A—C13—H13B109.5
C4—C5—Cl2118.4 (3)C10—C13—H13C109.5
C6—C5—Cl2118.5 (3)H13A—C13—H13C109.5
C5—C6—C1118.5 (4)H13B—C13—H13C109.5
C5—C6—H6120.7C1—N1—S1126.7 (3)
C1—C6—H6120.7C1—N1—H1N113 (4)
C12—C7—C8120.1 (4)S1—N1—H1N112 (4)
C12—C7—S1120.0 (3)O2—S1—O1120.10 (18)
C8—C7—S1119.8 (3)O2—S1—N1108.55 (19)
C9—C8—C7119.4 (4)O1—S1—N1103.68 (17)
C9—C8—H8120.3O2—S1—C7108.50 (19)
C7—C8—H8120.3O1—S1—C7107.86 (19)
C8—C9—C10120.9 (4)N1—S1—C7107.5 (2)
C8—C9—H9119.5
C6—C1—C2—C30.3 (6)C9—C10—C11—C120.2 (7)
N1—C1—C2—C3177.7 (4)C13—C10—C11—C12178.1 (5)
C1—C2—C3—C40.6 (7)C10—C11—C12—C70.9 (7)
C1—C2—C3—Cl1179.2 (3)C8—C7—C12—C111.4 (6)
C2—C3—C4—C50.6 (7)S1—C7—C12—C11178.5 (3)
Cl1—C3—C4—C5179.1 (3)C2—C1—N1—S137.0 (6)
C3—C4—C5—C60.4 (7)C6—C1—N1—S1145.5 (4)
C3—C4—C5—Cl2179.6 (3)C1—N1—S1—O247.9 (4)
C4—C5—C6—C10.2 (7)C1—N1—S1—O1176.6 (4)
Cl2—C5—C6—C1179.8 (3)C1—N1—S1—C769.3 (4)
C2—C1—C6—C50.2 (6)C12—C7—S1—O237.9 (4)
N1—C1—C6—C5177.7 (4)C8—C7—S1—O2142.2 (3)
C12—C7—C8—C91.1 (6)C12—C7—S1—O1169.5 (3)
S1—C7—C8—C9178.7 (3)C8—C7—S1—O110.7 (4)
C7—C8—C9—C100.4 (6)C12—C7—S1—N179.3 (4)
C8—C9—C10—C110.0 (7)C8—C7—S1—N1100.6 (3)
C8—C9—C10—C13177.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.87 (5)2.02 (6)2.888 (5)176 (5)
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H11Cl2NO2S
Mr316.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)6.7388 (8), 8.9627 (8), 22.944 (2)
β (°) 91.801 (8)
V3)1385.1 (2)
Z4
Radiation typeCu Kα
µ (mm1)5.61
Crystal size (mm)0.42 × 0.35 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.140, 0.482
No. of measured, independent and
observed [I > 2σ(I)] reflections
3363, 2424, 2049
Rint0.104
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.236, 1.11
No. of reflections2424
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.64

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.87 (5)2.02 (6)2.888 (5)176 (5)
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o2190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o1219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds