organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2H-Tetra­zol-5-yl)pyridinium hydrogen sulfate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 22 June 2009; accepted 18 August 2009; online 9 September 2009)

In the cation of the title compound, C6H6N5+·HSO4, the pyridine and tetra­zole rings are close to being co-planar [dihedral angle = 3.98 (7)°]. In the crystal, the ions are linked by O—H⋯O, N—H⋯O and N—H⋯(O,O) hydrogen bonds, resulting in chains.

Related literature

Tetrazoles are excellent ligands for the construction of metal-organic frameworks because of their various coordination modes, see: Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]). For the applications of metal-organic coordination compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Huang et al. (1999[Huang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95-98.]); Liu et al. (1999[Liu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31-34.]); Xie et al. (2003[Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712-3715.]); Zhang et al. (2001[Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118-4121.]); Zhang et al. (2000[Zhang, J., Xiong, R.-G., Zuo, J.-L. & You, X.-Z. (2000). Chem. Commun. 16, 1495-1496.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N5+·HSO4

  • Mr = 245.23

  • Triclinic, [P \overline 1]

  • a = 6.6515 (13) Å

  • b = 7.5507 (15) Å

  • c = 10.072 (2) Å

  • α = 77.72 (3)°

  • β = 76.88 (3)°

  • γ = 79.71 (3)°

  • V = 476.84 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000 (expected range = 0.848–0.932)

  • 4917 measured reflections

  • 2175 independent reflections

  • 1961 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.134

  • S = 1.07

  • 2175 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O2i 0.82 1.90 2.694 (2) 163
N1—H1A⋯O4ii 0.86 1.91 2.736 (2) 159
N4—H4A⋯O2iii 0.86 2.57 3.033 (3) 115
N4—H4A⋯O3 0.86 1.97 2.741 (2) 150
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y-1, z-1; (iii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of metal-organic coordination compounds has attracted much attention owing to the potential functions, such as permittivity, fluorescence, magnetism and optical properties. (Fu et al., 2007; Huang et al., 1999; Liu et al., 1999; Xie et al., 2003; Zhang et al.,2001; Zhang et al.,2000) Tetrazole compounds are a class of excellent ligands for the construction of novel metal-organic frameworks, because of its various coordination modes. (Wang, et al. 2005; Fu et al., 2008). We report here the crystal and molecular structure of the title compound, 4-(2H-tetrazol-5-yl)pyridinium bisulfate), (I) , Fig.1, The pyridine N atoms are protonated. The pyridine and tetrazole rings are nearly coplanar and only twisted from each other by a dihedral angle of 3.98 (7) °. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Wang, et al. 2005; Fu et al., 2008).The crystal packing is stabilized by coulombic forces , one O—H···O and three N—H···O hydrogen bonds (Table 1 and Fig.2).

Related literature top

For the applications of metal-organic coordination compounds, see: Fu et al. (2007); Huang et al. (1999); Liu et al. (1999); Xie et al. (2003); Zhang et al. (2001); Zhang et al. (2000). For the chemisty of tetrazoles, see: Fu et al. (2008); Wang et al. (2005).

Experimental top

Isonicotinonitrile (30 mmol), NaN 3 (45 mmol), NH4Cl (33 mmol) and DMF (50 ml) were added in a flask under nitrogen atmosphere and the mixture stirred at 110°C for 20 h. The resulting solution was then poured into ice-water (100 ml), and a white solid was obtained after adding HCl (6 M) still pH=6. The precipitate was filtered and washed with distilled water. Colourless block-shaped crystals suitable for X-ray analysis were obtained from the crude product by slow evaporation of an ethanol/H2SO4 (50:1 v/v) solution.

Refinement top

All H atoms attached to C, O and N atoms were fixed geometrically and treated as riding with C–H = 0.93 Å, O–H = 0.82 Å and N–H = 0.86 Å with Uiso(H) =1.2Ueq(C or N) and Uiso(H) =1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound showing the two dimensionnal hydrogen bondings network (dashed line). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
4-(2H-Tetrazol-5-yl)pyridinium hydrogen sulfate top
Crystal data top
C6H6N5+·HSO4Z = 2
Mr = 245.23F(000) = 252
Triclinic, P1Dx = 1.708 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6515 (13) ÅCell parameters from 1961 reflections
b = 7.5507 (15) Åθ = 3.2–27.5°
c = 10.072 (2) ŵ = 0.35 mm1
α = 77.72 (3)°T = 298 K
β = 76.88 (3)°Block, colorless
γ = 79.71 (3)°0.30 × 0.25 × 0.20 mm
V = 476.84 (16) Å3
Data collection top
Rigaku Mercury2
diffractometer
2175 independent reflections
Radiation source: fine-focus sealed tube1961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD profile fitting scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.910, Tmax = 1.000l = 1313
4917 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.1736P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2175 reflectionsΔρmax = 0.34 e Å3
146 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.137 (14)
Crystal data top
C6H6N5+·HSO4γ = 79.71 (3)°
Mr = 245.23V = 476.84 (16) Å3
Triclinic, P1Z = 2
a = 6.6515 (13) ÅMo Kα radiation
b = 7.5507 (15) ŵ = 0.35 mm1
c = 10.072 (2) ÅT = 298 K
α = 77.72 (3)°0.30 × 0.25 × 0.20 mm
β = 76.88 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2175 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1961 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.055
4917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.07Δρmax = 0.34 e Å3
2175 reflectionsΔρmin = 0.41 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17610 (8)0.76548 (6)0.48163 (5)0.0345 (2)
O20.0454 (3)0.7896 (2)0.54236 (17)0.0469 (4)
O10.2068 (3)0.9101 (2)0.34498 (15)0.0469 (4)
H1B0.16311.01280.36270.070*
C60.2581 (3)0.3789 (3)0.0215 (2)0.0321 (4)
N20.2528 (3)0.5615 (2)0.00724 (18)0.0394 (4)
O30.2479 (3)0.5928 (2)0.43634 (16)0.0445 (4)
N10.2800 (3)0.0732 (2)0.28273 (19)0.0397 (4)
H1A0.28240.01120.34560.048*
O40.3022 (3)0.8031 (2)0.56937 (19)0.0537 (5)
N30.2423 (3)0.6128 (3)0.1106 (2)0.0438 (5)
N40.2414 (3)0.4632 (3)0.20321 (19)0.0447 (5)
H4A0.23490.46300.28950.054*
N50.2511 (3)0.3125 (3)0.15493 (18)0.0444 (5)
C20.2855 (3)0.3527 (3)0.2218 (2)0.0363 (5)
H20.29350.47740.24720.044*
C30.2684 (3)0.2687 (3)0.0841 (2)0.0305 (4)
C40.2597 (3)0.0814 (3)0.0490 (2)0.0374 (5)
H40.24980.02170.04260.045*
C50.2661 (4)0.0136 (3)0.1518 (2)0.0415 (5)
H50.26060.13890.13030.050*
C10.2904 (4)0.2516 (3)0.3202 (2)0.0395 (5)
H10.30100.30720.41280.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0519 (4)0.0259 (3)0.0276 (3)0.0071 (2)0.0060 (2)0.00971 (19)
O20.0546 (10)0.0378 (8)0.0457 (9)0.0136 (7)0.0045 (7)0.0116 (7)
O10.0696 (11)0.0312 (8)0.0346 (8)0.0076 (7)0.0002 (7)0.0046 (6)
C60.0385 (10)0.0295 (9)0.0286 (9)0.0064 (8)0.0048 (7)0.0064 (7)
N20.0534 (11)0.0322 (9)0.0353 (9)0.0087 (8)0.0078 (8)0.0105 (7)
O30.0711 (11)0.0288 (8)0.0365 (8)0.0053 (7)0.0095 (7)0.0146 (6)
N10.0495 (10)0.0379 (10)0.0384 (10)0.0063 (8)0.0112 (8)0.0181 (8)
O40.0735 (12)0.0439 (9)0.0561 (10)0.0003 (8)0.0281 (9)0.0259 (8)
N30.0573 (11)0.0383 (10)0.0399 (10)0.0082 (8)0.0081 (8)0.0160 (8)
N40.0634 (13)0.0434 (10)0.0290 (9)0.0042 (9)0.0081 (8)0.0141 (7)
N50.0654 (13)0.0396 (10)0.0284 (9)0.0074 (9)0.0058 (8)0.0099 (7)
C20.0487 (12)0.0312 (10)0.0309 (10)0.0111 (9)0.0078 (8)0.0052 (8)
C30.0349 (9)0.0283 (9)0.0304 (9)0.0050 (7)0.0076 (7)0.0082 (7)
C40.0495 (12)0.0300 (10)0.0335 (10)0.0082 (9)0.0098 (8)0.0032 (8)
C50.0549 (13)0.0261 (10)0.0462 (12)0.0066 (9)0.0130 (10)0.0080 (8)
C10.0524 (12)0.0380 (11)0.0305 (10)0.0098 (9)0.0101 (9)0.0062 (8)
Geometric parameters (Å, º) top
S1—O31.4378 (15)N3—N41.302 (3)
S1—O41.4469 (17)N4—N51.315 (3)
S1—O21.4564 (17)N4—H4A0.8600
S1—O11.5623 (16)C2—C11.365 (3)
O1—H1B0.8200C2—C31.385 (3)
C6—N51.324 (3)C2—H20.9300
C6—N21.343 (3)C3—C41.392 (3)
C6—C31.466 (3)C4—C51.369 (3)
N2—N31.309 (2)C4—H40.9300
N1—C11.329 (3)C5—H50.9300
N1—C51.332 (3)C1—H10.9300
N1—H1A0.8600
O3—S1—O4112.84 (10)N5—N4—H4A122.5
O3—S1—O2113.35 (10)N4—N5—C6100.98 (18)
O4—S1—O2112.29 (11)C1—C2—C3119.79 (19)
O3—S1—O1104.09 (9)C1—C2—H2120.1
O4—S1—O1106.97 (11)C3—C2—H2120.1
O2—S1—O1106.53 (10)C2—C3—C4119.02 (18)
S1—O1—H1B109.5C2—C3—C6119.51 (18)
N5—C6—N2112.09 (18)C4—C3—C6121.47 (18)
N5—C6—C3124.79 (18)C5—C4—C3118.83 (19)
N2—C6—C3123.12 (18)C5—C4—H4120.6
N3—N2—C6106.28 (18)C3—C4—H4120.6
C1—N1—C5122.79 (18)N1—C5—C4120.08 (19)
C1—N1—H1A118.6N1—C5—H5120.0
C5—N1—H1A118.6C4—C5—H5120.0
N4—N3—N2105.63 (17)N1—C1—C2119.5 (2)
N3—N4—N5115.02 (17)N1—C1—H1120.3
N3—N4—H4A122.5C2—C1—H1120.3
C6—N2—N3—N40.1 (2)C3—C4—C5—N10.1 (3)
N2—N3—N4—N50.1 (3)N4—N5—C6—N20.0 (2)
N3—N4—N5—C60.1 (3)N4—N5—C6—C3179.4 (2)
C5—N1—C1—C20.4 (3)N3—N2—C6—N50.0 (2)
N1—C1—C2—C30.4 (3)N3—N2—C6—C3179.51 (19)
C1—C2—C3—C40.9 (3)C2—C3—C6—N5176.8 (2)
C1—C2—C3—C6178.5 (2)C4—C3—C6—N53.8 (3)
C2—C3—C4—C50.7 (3)C2—C3—C6—N23.7 (3)
C6—C3—C4—C5178.7 (2)C4—C3—C6—N2175.68 (19)
C1—N1—C5—C40.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O2i0.821.902.694 (2)163
N1—H1A···O4ii0.861.912.736 (2)159
N4—H4A···O2iii0.862.573.033 (3)115
N4—H4A···O30.861.972.741 (2)150
Symmetry codes: (i) x, y+2, z+1; (ii) x, y1, z1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H6N5+·HSO4
Mr245.23
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.6515 (13), 7.5507 (15), 10.072 (2)
α, β, γ (°)77.72 (3), 76.88 (3), 79.71 (3)
V3)476.84 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4917, 2175, 1961
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.134, 1.07
No. of reflections2175
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.41

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O2i0.821.902.694 (2)163.0
N1—H1A···O4ii0.861.912.736 (2)159.2
N4—H4A···O2iii0.862.573.033 (3)114.7
N4—H4A···O30.861.972.741 (2)149.5
Symmetry codes: (i) x, y+2, z+1; (ii) x, y1, z1; (iii) x, y+1, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31–34.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712–3715.  Web of Science CSD CrossRef Google Scholar
First citationZhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Xiong, R.-G., Zuo, J.-L. & You, X.-Z. (2000). Chem. Commun. 16, 1495–1496.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds