organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­phenyl{(E)-4-[4-(phenyldiazenyl)phenyl]-4H-1,2,4-triazol-1-yl}boron

aDepartment of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan, bInstitute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan, and cDepartment of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
*Correspondence e-mail: hayami@sci.kumamoto-u.ac.jp

(Received 25 July 2009; accepted 7 September 2009; online 9 September 2009)

In the title compound, C32H26BN5 or [(C14H11N5)B(C6H5)3], the B atom is approximately tetra­hedrally coordinated. The diazo unit is in a trans conformation, which is generally more stable than a cis one for aromatic azo compounds. The crystal structure features very weak C—H⋯π inter­actions. The dihedral angles between the central benzene ring and the terminal rings in the heterocycle are 62.64, 73.54 and 61.60°.

Related literature

For the use of azobenzenes for holographic information storage, see: Rasmussen et al. (1999[Rasmussen, P. H., Ramanujam, P. S., Hvilsted, S. & Berg, R. H. (1999). J. Am. Chem. Soc. 121, 4738-4743.]).

[Scheme 1]

Experimental

Crystal data
  • C32H26BN5

  • Mr = 491.39

  • Monoclinic, P 21 /n

  • a = 17.4049 (6) Å

  • b = 7.1284 (2) Å

  • c = 21.0645 (7) Å

  • β = 97.0810 (15)°

  • V = 2593.52 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (Higashi, 2001[Higashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.971, Tmax = 0.993

  • 19971 measured reflections

  • 5668 independent reflections

  • 4068 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.138

  • S = 1.03

  • 5668 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H3⋯Cg1i 0.95 2.91 3.822 (2) 162
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C27–C31 ring.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation,Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Yadokari-XG (Wakita, 2000[Wakita, K. (2000). Yadokari-XG. Department of Chemistry, Graduate School of Science, University of Tokyo, Japan.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Photochromic materials are of interest as media for recording, storage, and reproduction of information in nonlinear optics and holography. Aromatic azo compounds occupy an important place among such materials, therefore many photoisomerizable azobenzene groups were synthesized to apply for photoswitchable systems or optical data storage device (Rasmussen et al., 1999). Here we report the synthesis and crystal structure of the title complex. The addition compound of a triazole derivative with diazobenzene and a triphenylboron contains a B atom approximately tetrahedrally coordinated with a B—N distance of 1.636 (2) Å and B—C bond lengths averaging 1.625 (2) Å. The diazo moiety forms a trans conformation, and the bond distance N4—N5 is 1.2563 (19) Å. The crystal structure is stabilized by weak C—H···π (C27/C32) interactions between phenyl hydrogens from (E)-4-(4-(phenyldiazenyl)phenyl-4H-1,2,4-triazole fragment to phenyl rings from triphenylboron fragment. Fig 2, Table 1.

Related literature top

For the use of azobenzene for holographic information storage, see: Rasmussen et al. (1999).

Experimental top

The compound (I) was synthesized by refluxed for an hour with (E)-4-(4-(phenyldiazenyl)phenyl)-4H-1,2,4-triazole (3 mmol, 0.748 g), sodium tetraphenylborate (4 mmol, 1.369 g) and iron chloride tetrahydrate (2 mmol, 0.390 g) in ethanol (50 ml). The resulting yellow solution was filtered and the single crystals of (I) suitable X-ray diffraction were obtained by slowly evaporation of ethanol.

Refinement top

All H atoms were positioned geometrically (C—H = 0.95 Å) and were refined as riding, with Uĩso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG (Wakita, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing for the compound (I) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing structure for the compound (I).
Triphenyl{(E)-4-[4-(phenyldiazenyl)phenyl]-4H-1,2,4- triazol-1-yl}boron top
Crystal data top
C32H26BN5F(000) = 1032
Mr = 491.39Dx = 1.258 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 13301 reflections
a = 17.4049 (6) Åθ = 2.7–27.4°
b = 7.1284 (2) ŵ = 0.08 mm1
c = 21.0645 (7) ÅT = 113 K
β = 97.0810 (15)°Block, orange
V = 2593.52 (14) Å30.40 × 0.20 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5668 independent reflections
Radiation source: fine-focus sealed tube4068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.4°, θmin = 1.4°
Absorption correction: multi-scan
(Higashi, 2001)
h = 2122
Tmin = 0.971, Tmax = 0.993k = 98
19971 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0835P)2]
where P = (Fo2 + 2Fc2)/3
5668 reflections(Δ/σ)max = 0.002
343 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C32H26BN5V = 2593.52 (14) Å3
Mr = 491.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.4049 (6) ŵ = 0.08 mm1
b = 7.1284 (2) ÅT = 113 K
c = 21.0645 (7) Å0.40 × 0.20 × 0.10 mm
β = 97.0810 (15)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5668 independent reflections
Absorption correction: multi-scan
(Higashi, 2001)
4068 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.993Rint = 0.050
19971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
5668 reflectionsΔρmin = 0.27 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.21836 (11)0.3083 (3)0.04914 (9)0.0190 (4)
C10.29403 (9)0.0119 (2)0.10360 (8)0.0197 (4)
H10.28000.07580.07020.024*
C20.34594 (11)0.1427 (2)0.19029 (8)0.0285 (4)
H20.37650.16180.23040.034*
C30.38777 (9)0.1882 (2)0.17537 (8)0.0201 (4)
C40.41059 (10)0.2207 (2)0.23988 (8)0.0256 (4)
H30.39420.13990.27140.031*
C50.45769 (11)0.3730 (2)0.25743 (8)0.0273 (4)
H40.47500.39490.30140.033*
C60.48000 (9)0.4945 (2)0.21125 (8)0.0214 (4)
C70.45478 (10)0.4616 (2)0.14683 (8)0.0219 (4)
H50.46870.54600.11530.026*
C80.40960 (9)0.3068 (2)0.12870 (8)0.0217 (4)
H60.39370.28200.08470.026*
C90.58832 (10)0.9199 (2)0.21814 (8)0.0225 (4)
C100.62167 (10)0.9365 (3)0.28142 (8)0.0247 (4)
H70.61020.84730.31240.030*
C110.67159 (10)1.0832 (3)0.29885 (9)0.0296 (4)
H80.69441.09500.34200.036*
C120.68874 (11)1.2142 (3)0.25356 (9)0.0330 (5)
H90.72381.31370.26570.040*
C130.65460 (12)1.1989 (3)0.19090 (10)0.0353 (5)
H100.66591.28880.16000.042*
C140.60408 (11)1.0529 (3)0.17306 (9)0.0313 (4)
H110.58021.04350.13010.038*
C150.17458 (9)0.1567 (2)0.00001 (8)0.0194 (4)
C160.12558 (9)0.0210 (2)0.02111 (8)0.0222 (4)
H120.11840.01890.06510.027*
C170.08711 (10)0.1107 (2)0.01958 (9)0.0267 (4)
H130.05470.20150.00330.032*
C180.09617 (11)0.1094 (2)0.08390 (9)0.0292 (4)
H140.07020.19940.11210.035*
C190.14345 (10)0.0242 (3)0.10691 (8)0.0286 (4)
H150.14950.02680.15110.034*
C200.18194 (10)0.1542 (2)0.06551 (8)0.0230 (4)
H160.21430.24450.08210.028*
C210.28127 (9)0.4280 (2)0.01512 (7)0.0190 (4)
C220.35283 (10)0.3533 (2)0.00407 (8)0.0233 (4)
H170.36720.23290.02080.028*
C230.40343 (10)0.4484 (3)0.03036 (8)0.0266 (4)
H180.45150.39310.03670.032*
C240.38387 (10)0.6248 (3)0.05563 (8)0.0282 (4)
H190.41850.69110.07900.034*
C250.31309 (10)0.7026 (3)0.04624 (8)0.0258 (4)
H200.29880.82230.06360.031*
C260.26302 (10)0.6055 (2)0.01144 (8)0.0219 (4)
H210.21490.66120.00540.026*
C270.15982 (10)0.4430 (2)0.08339 (8)0.0195 (4)
C280.18757 (10)0.5898 (2)0.12474 (8)0.0222 (4)
H220.24190.60430.13540.027*
C290.13847 (11)0.7138 (2)0.15035 (8)0.0256 (4)
H230.15940.81270.17740.031*
C300.05859 (11)0.6942 (3)0.13665 (8)0.0277 (4)
H240.02470.77850.15430.033*
C310.02944 (10)0.5507 (3)0.09706 (9)0.0275 (4)
H250.02500.53480.08760.033*
C320.07955 (10)0.4284 (2)0.07081 (8)0.0241 (4)
H260.05810.33130.04320.029*
N10.26879 (8)0.1851 (2)0.10506 (6)0.0194 (3)
N20.30188 (9)0.2706 (2)0.16050 (7)0.0285 (4)
N30.34303 (8)0.02185 (19)0.15713 (6)0.0204 (3)
N40.52992 (8)0.6447 (2)0.23468 (7)0.0238 (3)
N50.53680 (8)0.7720 (2)0.19453 (7)0.0245 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0204 (9)0.0185 (9)0.0176 (9)0.0035 (8)0.0006 (7)0.0034 (8)
C10.0226 (8)0.0201 (8)0.0159 (8)0.0007 (8)0.0001 (6)0.0013 (7)
C20.0378 (10)0.0253 (10)0.0205 (9)0.0030 (9)0.0045 (8)0.0015 (7)
C30.0211 (8)0.0176 (8)0.0210 (8)0.0019 (7)0.0000 (7)0.0034 (7)
C40.0351 (10)0.0244 (9)0.0166 (8)0.0058 (8)0.0005 (7)0.0011 (7)
C50.0369 (10)0.0268 (10)0.0165 (9)0.0035 (8)0.0036 (7)0.0015 (7)
C60.0216 (8)0.0229 (9)0.0190 (8)0.0015 (8)0.0002 (7)0.0034 (7)
C70.0240 (8)0.0227 (9)0.0189 (8)0.0028 (8)0.0030 (7)0.0001 (7)
C80.0227 (8)0.0266 (9)0.0151 (8)0.0009 (8)0.0005 (6)0.0020 (7)
C90.0232 (9)0.0229 (9)0.0222 (9)0.0031 (8)0.0057 (7)0.0046 (7)
C100.0266 (9)0.0245 (9)0.0235 (9)0.0028 (8)0.0050 (7)0.0029 (7)
C110.0296 (10)0.0304 (10)0.0285 (10)0.0027 (9)0.0023 (8)0.0071 (8)
C120.0319 (10)0.0275 (10)0.0409 (12)0.0094 (9)0.0102 (9)0.0093 (9)
C130.0449 (12)0.0287 (10)0.0347 (11)0.0094 (10)0.0140 (9)0.0002 (9)
C140.0403 (11)0.0302 (10)0.0234 (9)0.0054 (9)0.0041 (8)0.0009 (8)
C150.0192 (8)0.0190 (8)0.0196 (8)0.0061 (7)0.0001 (6)0.0014 (7)
C160.0214 (9)0.0234 (9)0.0215 (9)0.0041 (8)0.0016 (7)0.0018 (7)
C170.0224 (9)0.0216 (9)0.0343 (10)0.0007 (8)0.0031 (7)0.0026 (8)
C180.0296 (10)0.0219 (9)0.0325 (10)0.0030 (8)0.0102 (8)0.0068 (8)
C190.0350 (10)0.0300 (10)0.0190 (9)0.0061 (9)0.0031 (7)0.0029 (7)
C200.0263 (9)0.0220 (9)0.0203 (9)0.0025 (8)0.0009 (7)0.0001 (7)
C210.0223 (8)0.0209 (8)0.0129 (8)0.0009 (7)0.0008 (6)0.0022 (6)
C220.0241 (9)0.0234 (9)0.0225 (9)0.0027 (8)0.0029 (7)0.0009 (7)
C230.0237 (9)0.0305 (10)0.0266 (9)0.0036 (8)0.0071 (7)0.0002 (8)
C240.0284 (9)0.0334 (10)0.0238 (9)0.0030 (9)0.0081 (7)0.0029 (8)
C250.0303 (9)0.0259 (9)0.0205 (9)0.0009 (8)0.0008 (7)0.0047 (7)
C260.0224 (8)0.0251 (9)0.0181 (8)0.0030 (8)0.0017 (7)0.0004 (7)
C270.0250 (9)0.0181 (8)0.0158 (8)0.0023 (8)0.0041 (6)0.0037 (7)
C280.0248 (9)0.0217 (9)0.0205 (9)0.0030 (8)0.0044 (7)0.0025 (7)
C290.0379 (10)0.0204 (9)0.0194 (9)0.0003 (8)0.0076 (7)0.0004 (7)
C300.0345 (10)0.0270 (9)0.0238 (9)0.0088 (9)0.0125 (8)0.0012 (8)
C310.0239 (9)0.0298 (10)0.0295 (10)0.0021 (8)0.0059 (7)0.0024 (8)
C320.0260 (9)0.0240 (9)0.0225 (9)0.0014 (8)0.0032 (7)0.0008 (7)
N10.0217 (7)0.0208 (7)0.0153 (7)0.0017 (6)0.0006 (5)0.0010 (6)
N20.0382 (9)0.0267 (8)0.0182 (7)0.0030 (7)0.0063 (6)0.0037 (6)
N30.0231 (7)0.0211 (7)0.0165 (7)0.0009 (6)0.0003 (6)0.0000 (6)
N40.0265 (8)0.0247 (8)0.0201 (7)0.0031 (7)0.0015 (6)0.0025 (6)
N50.0269 (8)0.0261 (8)0.0203 (7)0.0038 (7)0.0023 (6)0.0023 (6)
Geometric parameters (Å, º) top
B1—C151.621 (2)C15—C201.401 (2)
B1—C211.623 (2)C16—C171.387 (2)
B1—C271.631 (2)C16—H120.9500
B1—N11.636 (2)C17—C181.383 (3)
C1—N11.312 (2)C17—H130.9500
C1—N31.349 (2)C18—C191.385 (3)
C1—H10.9500C18—H140.9500
C2—N21.302 (2)C19—C201.387 (2)
C2—N31.363 (2)C19—H150.9500
C2—H20.9500C20—H160.9500
C3—C41.388 (2)C21—C221.400 (2)
C3—C81.385 (2)C21—C261.404 (2)
C3—N31.444 (2)C22—H170.9500
C4—C51.383 (2)C22—C231.385 (2)
C4—H30.9500C23—C241.391 (2)
C5—C61.393 (2)C23—H180.9500
C5—H40.9500C24—C251.387 (2)
C6—C71.394 (2)C24—H190.9500
C6—N41.428 (2)C25—C261.390 (2)
C7—H50.9500C25—H200.9500
C7—C81.381 (2)C26—H210.9500
C8—H60.9500C27—C281.408 (2)
C9—C101.392 (2)C27—C321.393 (2)
C9—C141.393 (2)C28—C291.384 (2)
C9—N51.433 (2)C28—H220.9500
C10—C111.380 (2)C29—C301.392 (3)
C10—H70.9500C29—H230.9500
C11—C121.393 (3)C30—C311.377 (3)
C11—H80.9500C30—H240.9500
C12—C131.383 (3)C31—C321.394 (2)
C12—H90.9500C31—H250.9500
C13—C141.384 (3)C32—H260.9500
C13—H100.9500N1—N21.3787 (18)
C14—H110.9500N4—N51.2563 (19)
C15—C161.398 (2)
B1—C15—C16121.02 (14)C15—C20—C19122.11 (17)
B1—C15—C20122.99 (15)C15—C20—H16118.9
B1—C21—C22122.41 (15)C16—C15—C20115.98 (15)
B1—C21—C26121.19 (14)C16—C17—C18119.75 (17)
B1—C27—C32122.56 (15)C16—C17—H13120.1
B1—C27—C28121.70 (15)C17—C16—H12118.7
B1—N1—C1129.79 (13)C17—C18—C19119.48 (16)
B1—N1—N2120.24 (13)C17—C18—H14120.3
C1—N1—N2109.25 (13)C18—C17—H13120.1
C1—N3—C2104.76 (14)C18—C19—C20120.08 (17)
C1—N3—C3129.28 (14)C18—C19—H15120.0
C2—N2—N1104.99 (14)C19—C18—H14120.3
C2—N3—C3125.84 (14)C19—C20—H16118.9
C3—C4—C5118.81 (16)C20—C19—H15120.0
C3—C4—H3120.6C21—B1—C27112.21 (14)
C3—C8—C7119.23 (15)C21—B1—N1105.60 (12)
C3—C8—H6120.4C21—C22—C23122.48 (16)
C4—C3—C8121.50 (16)C21—C22—H17118.8
C4—C3—N3118.53 (15)C21—C26—C25122.20 (16)
C4—C5—C6120.56 (16)C21—C26—H21118.9
C4—C5—H4119.7C22—C21—C26116.02 (15)
C5—C4—H3120.6C22—C23—C24120.08 (16)
C5—C6—C7119.60 (16)C22—C23—H18120.0
C5—C6—N4115.79 (14)C23—C22—H17118.8
C6—C5—H4119.7C23—C24—C25119.10 (16)
C6—C7—C8120.25 (16)C23—C24—H19120.4
C6—C7—H5119.9C24—C23—H18120.0
C6—N4—N5114.42 (14)C24—C25—C26120.12 (16)
C7—C6—N4124.60 (15)C24—C25—H20119.9
C7—C8—H6120.4C25—C24—H19120.4
C8—C3—N3119.91 (14)C25—C26—H21118.9
C8—C7—H5119.9C26—C25—H20119.9
C9—C10—C11119.59 (17)C27—B1—N1107.85 (13)
C9—C10—H7120.2C27—C28—C29122.30 (16)
C9—C14—C13119.91 (17)C27—C28—H22118.9
C9—C14—H11120.0C27—C32—C31122.65 (17)
C9—N5—N4113.92 (14)C27—C32—H26118.7
C10—C9—C14120.07 (16)C28—C27—C32115.62 (15)
C10—C9—N5124.35 (16)C28—C29—C30120.25 (17)
C10—C11—C12120.43 (18)C28—C29—H23119.9
C10—C11—H8119.8C29—C28—H22118.9
C11—C10—H7120.2C29—C30—C31119.00 (16)
C11—C12—C13119.84 (18)C29—C30—H24120.5
C11—C12—H9120.1C30—C29—H23119.9
C12—C11—H8119.8C30—C31—C32120.17 (17)
C12—C13—C14120.13 (18)C30—C31—H25119.9
C12—C13—H10119.9C31—C30—H24120.5
C13—C12—H9120.1C31—C32—H26118.7
C13—C14—H11120.0C32—C31—H25119.9
C14—C9—N5115.58 (15)N1—C1—N3109.09 (14)
C14—C13—H10119.9N1—C1—H1125.5
C15—B1—C21110.99 (13)N2—C2—N3111.91 (15)
C15—B1—C27113.89 (14)N2—C2—H2124.0
C15—B1—N1105.67 (13)N3—C1—H1125.5
C15—C16—C17122.59 (16)N3—C2—H2124.0
C15—C16—H12118.7
B1—C15—C16—C17179.90 (15)C20—C15—B1—C219.8 (2)
B1—C15—C20—C19179.44 (15)C20—C15—B1—C27118.01 (17)
B1—C21—C22—C23173.63 (15)C20—C15—B1—N1123.80 (16)
B1—C21—C26—C25173.56 (15)C20—C15—C16—C170.9 (2)
B1—C27—C32—C31176.03 (16)C20—C19—C18—C170.6 (3)
B1—N1—C1—N3170.60 (14)C22—C21—B1—C1575.75 (19)
B1—N1—N2—C2171.42 (15)C22—C21—B1—C27155.54 (15)
C1—N1—B1—C1522.6 (2)C22—C21—B1—N138.3 (2)
C1—N1—B1—C2195.12 (19)C22—C21—C26—C250.5 (2)
C1—N1—B1—C27144.72 (16)C22—C23—C24—C250.5 (3)
C1—N1—N2—C20.18 (19)C24—C23—C22—C210.2 (3)
C1—N3—C2—N20.4 (2)C24—C25—C26—C210.2 (3)
C1—N3—C3—C4156.01 (17)C26—C21—B1—C1596.88 (17)
C1—N3—C3—C826.6 (3)C26—C21—B1—C2731.8 (2)
C2—N3—C1—N10.54 (18)C26—C21—B1—N1149.07 (14)
C2—N3—C3—C428.5 (3)C26—C21—C22—C230.6 (2)
C2—N3—C3—C8148.83 (17)C26—C25—C24—C230.6 (3)
C3—C4—C5—C61.8 (3)C27—C28—C29—C301.3 (3)
C3—C8—C7—C62.0 (3)C28—C27—B1—C15176.33 (14)
C3—N3—C1—N1176.73 (15)C28—C27—B1—C2149.2 (2)
C3—N3—C2—N2176.80 (15)C28—C27—B1—N166.73 (19)
C5—C6—C7—C81.7 (3)C28—C27—C32—C310.1 (2)
C6—N4—N5—C9178.72 (14)C29—C28—C27—B1175.07 (15)
C7—C6—C5—C40.2 (3)C29—C28—C27—C321.1 (2)
C7—C8—C3—C40.4 (3)C30—C31—C32—C270.7 (3)
C7—C8—C3—N3177.64 (15)C31—C30—C29—C280.4 (3)
C8—C3—C4—C51.5 (3)C32—C27—B1—C150.4 (2)
C10—C9—C14—C131.7 (3)C32—C27—B1—C21126.77 (17)
C10—C9—N5—N47.0 (2)C32—C27—B1—N1117.34 (16)
C10—C11—C12—C131.0 (3)C32—C31—C30—C290.6 (3)
C12—C11—C10—C90.1 (3)N1—N2—C2—N30.2 (2)
C12—C13—C14—C90.8 (3)N2—N1—B1—C15168.22 (13)
C14—C9—C10—C111.3 (3)N2—N1—B1—C2174.09 (17)
C14—C9—N5—N4173.24 (16)N2—N1—B1—C2746.06 (19)
C14—C13—C12—C110.6 (3)N2—N1—C1—N30.46 (18)
C15—C20—C19—C180.3 (3)N3—C3—C4—C5175.80 (16)
C16—C15—B1—C21171.30 (14)N4—C6—C5—C4178.77 (16)
C16—C15—B1—C2760.91 (19)N4—C6—C7—C8176.73 (15)
C16—C15—B1—N157.29 (18)N5—C9—C10—C11178.98 (16)
C16—C15—C20—C190.5 (2)N5—C9—C14—C13178.52 (17)
C16—C17—C18—C190.2 (3)N5—N4—C6—C5166.55 (16)
C18—C17—C16—C150.6 (2)N5—N4—C6—C715.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H3···Cg1i0.952.913.822 (2)162
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC32H26BN5
Mr491.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)17.4049 (6), 7.1284 (2), 21.0645 (7)
β (°) 97.0810 (15)
V3)2593.52 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(Higashi, 2001)
Tmin, Tmax0.971, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
19971, 5668, 4068
Rint0.050
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.138, 1.03
No. of reflections5668
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.27

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Yadokari-XG (Wakita, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H3···Cg1i0.952.913.822 (2)162
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the project `Development of Molecular Devices in Ferroelectric Metallomesogens' in 2006 of the New Energy and Industrial Technology Development Organization (NEDO) of Japan and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Governement (No. 20350028).

References

First citationHigashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRasmussen, P. H., Ramanujam, P. S., Hvilsted, S. & Berg, R. H. (1999). J. Am. Chem. Soc. 121, 4738–4743.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation,Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2000). Yadokari-XG. Department of Chemistry, Graduate School of Science, University of Tokyo, Japan.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds