organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nicotinium hydrogen sulfate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: clz1977@sina.com

(Received 10 August 2009; accepted 31 August 2009; online 5 September 2009)

The structure of title compound, C6H6NO2+·HSO4, comprises discrete ions which are inter­conected by N—H⋯O and O—H⋯O hydrogen bonds, leading to a neutral one-dimensional network along [001]. These hydrogen bonds appear to complement the Coulombic inter­action and help to stabilize the structure further.

Related literature

For simple mol­ecular–ionic crystals containing organic cations and acid radicals (1:1 molar ratio), see: Czupiński et al. (2002[Czupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Świergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497-8512.]); Katrusiak & Szafrański (1999[Katrusiak, A. & Szafrański, M. (1999). Phys. Rev. Lett. 82, 576-579.], 2006[Katrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775-15785.]). For the structure of dinicotinium sulfate, see: Athimoolam & Rajaram (2005[Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o2764-o2767.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6NO2+·HSO4

  • Mr = 221.19

  • Monoclinic, P 21 /c

  • a = 8.2654 (17) Å

  • b = 11.545 (2) Å

  • c = 9.4669 (19) Å

  • β = 109.43 (3)°

  • V = 851.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 293 K

  • 0.25 × 0.2 × 0.2 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.91, Tmax = 0.93

  • 8643 measured reflections

  • 1949 independent reflections

  • 1788 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.14

  • 1949 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O3 0.85 1.83 2.6697 (18) 169
O6—H1⋯O5i 0.89 1.73 2.6129 (17) 170
N1—H1B⋯O4ii 0.86 2.11 2.843 (2) 143
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, much attention has been devoted to simple molecular–ionic crystals containing organic cations and acid radicals (1:1molar ratio) due to the tunability of their special structural features and their interesting physical properties. (e.g. Czupiński et al., 2002; Katrusiak & Szafrański, 1999; Katrusiak & Szafrański, 2006) the crystal structure of dinicotinium sulfate compound have been reported (Athimoolam et al., 2005). In our laboratory, a compound containing protoned nicotinic acid and HSO4- anions has been synthesized, its crystal structure is reported herein.

The asymmetric unit of the title compound, C6H6NO2+.HSO4-, (Fig.1) consists of protoned nicotinic acid and HSO4- anions, the nicotinium cation is essentially planar. The protonation of the N site of the pyridine ring is demonstrated by the C—N bond distances and C—N—C bond angle. Usually, protonation on the aromatic ring leads to a slightly larger C—N—C bond angle (122.9 (2)°). Cations and anions are placed alternately and linked through intermolecular hydrogen bonds (Fig. 2 and Table 1). The structure of title compound C6H6NO2+.HSO4-, comprises discrete ions which are placed alternately and interconected by N—H···O and O—H···O hydrogen bonds leading to a neutral one-dimensional network along [001] direction. These hydrogen bonds appear to complement the Coulombic interaction and help to stabilize the structure further.

Related literature top

For simple molecular–ionic crystals containing organic cations and acid radicals (1:1 molar ratio), see: Czupiński et al. (2002); Katrusiak & Szafrański (1999,2006). For the structure of

dinicotinium sulfate, see: Athimoolam et al. (2005).

Experimental top

Nicotinic acid (10 mmol) and 10% aqueous H2SO4 in a molar ratio of 1:1 were mixed and dissolved in water by heating to 323 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed, collected and washed with dilute aqueous H2SO4.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 Å, O—H = 0.85 Å and N—H = 0.86 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels
[Figure 2] Fig. 2. The packing viewed along the a axis. Hydrogen bonds are drawn as dashed lines
Nicotinium hydrogen sulfate top
Crystal data top
C6H6NO2+·HSO4F(000) = 456
Mr = 221.19Dx = 1.725 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1788 reflections
a = 8.2654 (17) Åθ = 3.2–27.5°
b = 11.545 (2) ŵ = 0.39 mm1
c = 9.4669 (19) ÅT = 293 K
β = 109.43 (3)°Block, colorless
V = 851.9 (3) Å30.25 × 0.2 × 0.2 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
1949 independent reflections
Radiation source: fine-focus sealed tube1788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.91, Tmax = 0.93l = 1212
8643 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.3479P]
where P = (Fo2 + 2Fc2)/3
1949 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C6H6NO2+·HSO4V = 851.9 (3) Å3
Mr = 221.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2654 (17) ŵ = 0.39 mm1
b = 11.545 (2) ÅT = 293 K
c = 9.4669 (19) Å0.25 × 0.2 × 0.2 mm
β = 109.43 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1949 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1788 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.93Rint = 0.029
8643 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.14Δρmax = 0.21 e Å3
1949 reflectionsΔρmin = 0.49 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.75328 (5)0.70391 (3)0.56623 (4)0.02440 (13)
O10.71400 (17)0.45258 (11)0.34210 (15)0.0396 (3)
O20.87198 (17)0.40764 (11)0.57869 (13)0.0382 (3)
H2B0.88390.48070.58770.057*
O30.90270 (15)0.63375 (11)0.64101 (13)0.0340 (3)
O40.59511 (16)0.64255 (12)0.54911 (14)0.0391 (3)
O50.75643 (18)0.75578 (12)0.42787 (13)0.0395 (3)
O60.76089 (19)0.81232 (11)0.66597 (13)0.0414 (4)
H10.75970.79750.75810.062*
N10.60598 (19)0.10546 (14)0.25572 (17)0.0366 (4)
H1B0.53610.08400.17010.044*
C40.75053 (19)0.25493 (14)0.41590 (17)0.0259 (3)
C50.6393 (2)0.21802 (15)0.27984 (19)0.0312 (4)
H5A0.58770.27150.20500.037*
C30.8265 (2)0.17308 (15)0.52470 (19)0.0334 (4)
H3A0.90310.19600.61690.040*
C20.7879 (3)0.05679 (16)0.4957 (2)0.0422 (4)
H2A0.83720.00130.56850.051*
C60.7770 (2)0.38299 (15)0.43965 (18)0.0282 (3)
C10.6761 (3)0.02450 (16)0.3583 (2)0.0414 (4)
H1A0.64940.05320.33700.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0327 (2)0.0247 (2)0.01610 (19)0.00166 (15)0.00847 (15)0.00001 (13)
O10.0447 (7)0.0301 (7)0.0398 (7)0.0039 (6)0.0083 (6)0.0078 (5)
O20.0476 (7)0.0270 (6)0.0332 (7)0.0027 (5)0.0044 (5)0.0032 (5)
O30.0314 (6)0.0327 (6)0.0306 (6)0.0016 (5)0.0007 (5)0.0031 (5)
O40.0306 (6)0.0493 (8)0.0370 (7)0.0028 (6)0.0104 (5)0.0001 (6)
O50.0642 (9)0.0384 (7)0.0199 (6)0.0022 (6)0.0195 (6)0.0021 (5)
O60.0776 (10)0.0271 (6)0.0241 (6)0.0051 (6)0.0230 (6)0.0019 (5)
N10.0338 (8)0.0376 (8)0.0334 (8)0.0030 (6)0.0045 (6)0.0106 (6)
C40.0231 (7)0.0274 (8)0.0265 (8)0.0008 (6)0.0073 (6)0.0005 (6)
C50.0295 (8)0.0336 (9)0.0274 (8)0.0029 (7)0.0051 (6)0.0002 (7)
C30.0338 (9)0.0312 (9)0.0291 (8)0.0010 (7)0.0025 (7)0.0018 (7)
C20.0512 (11)0.0281 (9)0.0417 (11)0.0031 (8)0.0079 (8)0.0069 (8)
C60.0251 (7)0.0280 (8)0.0309 (8)0.0007 (6)0.0086 (6)0.0016 (6)
C10.0461 (11)0.0268 (9)0.0501 (11)0.0043 (8)0.0145 (9)0.0059 (8)
Geometric parameters (Å, º) top
S1—O41.4478 (13)N1—H1B0.8600
S1—O51.4483 (12)C4—C51.377 (2)
S1—O31.4493 (13)C4—C31.385 (2)
S1—O61.5565 (12)C4—C61.500 (2)
O1—C61.204 (2)C5—H5A0.9300
O2—C61.320 (2)C3—C21.386 (3)
O2—H2B0.8501C3—H3A0.9300
O6—H10.8921C2—C11.373 (3)
N1—C51.332 (2)C2—H2A0.9300
N1—C11.334 (2)C1—H1A0.9300
O4—S1—O5112.85 (8)N1—C5—H5A120.1
O4—S1—O3111.86 (8)C4—C5—H5A120.1
O5—S1—O3113.83 (8)C4—C3—C2119.75 (16)
O4—S1—O6108.30 (8)C4—C3—H3A120.1
O5—S1—O6101.94 (7)C2—C3—H3A120.1
O3—S1—O6107.28 (8)C1—C2—C3119.25 (17)
C6—O2—H2B108.9C1—C2—H2A120.4
S1—O6—H1115.3C3—C2—H2A120.4
C5—N1—C1122.94 (16)O1—C6—O2125.66 (16)
C5—N1—H1B118.5O1—C6—C4122.57 (15)
C1—N1—H1B118.5O2—C6—C4111.75 (14)
C5—C4—C3118.73 (16)N1—C1—C2119.48 (17)
C5—C4—C6117.62 (15)N1—C1—H1A120.3
C3—C4—C6123.61 (15)C2—C1—H1A120.3
N1—C5—C4119.85 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O30.851.832.6697 (18)169
O6—H1···O5i0.891.732.6129 (17)170
N1—H1B···O4ii0.862.112.843 (2)143
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6NO2+·HSO4
Mr221.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.2654 (17), 11.545 (2), 9.4669 (19)
β (°) 109.43 (3)
V3)851.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.25 × 0.2 × 0.2
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.91, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
8643, 1949, 1788
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.14
No. of reflections1949
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.49

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O30.851.832.6697 (18)169.1
O6—H1···O5i0.891.732.6129 (17)170.2
N1—H1B···O4ii0.862.112.843 (2)143.1
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationAthimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o2764–o2767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCzupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Świergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497–8512.  Google Scholar
First citationKatrusiak, A. & Szafrański, M. (1999). Phys. Rev. Lett. 82, 576–579.  Web of Science CrossRef CAS Google Scholar
First citationKatrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775–15785.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds