organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Cyano­anilinium bromide

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 19 August 2009; accepted 31 August 2009; online 9 September 2009)

In the cation of the title compound, C7H7N2+·Br, all non-H atoms are essentially coplanar [r.m.s. deviation = 0.010 (5) Å]. The compound is isomorphous with the chloride analogue. In the crystal, the cations and anions are connected by N—H⋯Br hydrogen bonds.

Related literature

For applications of metal-organic coordination compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H., Huang, S.-P. & -, D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Chen et al. (2001[Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346-349.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]); Xiong et al. (1999[Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051-1052.]); Xie et al. (2003[Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712-3715.]); Zhao et al. (2004[Zhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem. 630, 1367-1370.]). For nitrile derivatives, see: Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Wang et al. 2002[Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191-1194.]. For the chloride analogue, see: Wen (2008[Wen, X.-C. (2008). Acta Cryst. E64, o1462.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N2+·Br

  • Mr = 199.06

  • Triclinic, [P \overline 1]

  • a = 4.6396 (9) Å

  • b = 6.1757 (12) Å

  • c = 13.542 (3) Å

  • α = 93.07 (3)°

  • β = 96.22 (3)°

  • γ = 97.33 (3)°

  • V = 381.68 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.31 mm−1

  • T = 298 K

  • 0.40 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.90, Tmax = 1.00

  • 3777 measured reflections

  • 1716 independent reflections

  • 1378 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.134

  • S = 1.10

  • 1716 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Br1i 0.89 2.59 3.434 (4) 159
N2—H2B⋯Br1ii 0.89 2.46 3.337 (4) 169
N2—H2C⋯Br1 0.89 2.45 3.299 (4) 160
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Fu et al., 2007; Chen et al., 2001; Fu & Xiong (2008); Xie et al., 2003; Zhao et al.,2004; Xiong et al., 1999). Nitrile derivatives are a class of excellent ligands for the construction of novel metal-organic frameworks. (Wang et al. 2002; Fu et al., 2008). We report here the crystal structure of the title compound, which is isomorphous with the chloride analogue (Wen, 2008). In the cation all non-H atoms are essentially coplanar [r.m.s. deviation 0.010 (5) Å]. In the crystal structure, the organic cations and bromide ions are connected by N—H···Br hydrogen bonds along b axis, (Table 1), (Fig. 2).

Related literature top

For applications of metal-organic coordination compounds, see: Fu et al. (2007); Chen et al. (2001); Fu & Xiong (2008); Xiong et al. (1999); Xie et al. (2003); Zhao et al. (2004). For nitrile derivatives, see: Fu et al. (2008); Wang et al. 2002. For the chloride analogue, see: Wen (2008).

Experimental top

The commercial 3-aminobenzonitrile (3 mmol, 0.55 g) and HBr (0.5 ml) were dissolved in ethanol (20 ml). Colourless block-shaped crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation at room temperature.

Refinement top

All H atoms attached to C and N atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å, N-H = 0.89 Å and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N). A rotating-group model was used for the -NH3 group.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis showing the N—H···Br interactions (dotted line) in the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
3-Cyanoanilinium bromide top
Crystal data top
C7H7N2+·BrZ = 2
Mr = 199.06F(000) = 196
Triclinic, P1Dx = 1.732 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6396 (9) ÅCell parameters from 1378 reflections
b = 6.1757 (12) Åθ = 3.0–27.5°
c = 13.542 (3) ŵ = 5.31 mm1
α = 93.07 (3)°T = 298 K
β = 96.22 (3)°Block, colourless
γ = 97.33 (3)°0.40 × 0.05 × 0.05 mm
V = 381.68 (13) Å3
Data collection top
Rigaku Mercury2
diffractometer
1716 independent reflections
Radiation source: fine-focus sealed tube1378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD profile fitting scansh = 65
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 88
Tmin = 0.90, Tmax = 1.00l = 1717
3777 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.053P)2 + 0.0394P]
where P = (Fo2 + 2Fc2)/3
1716 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
C7H7N2+·Brγ = 97.33 (3)°
Mr = 199.06V = 381.68 (13) Å3
Triclinic, P1Z = 2
a = 4.6396 (9) ÅMo Kα radiation
b = 6.1757 (12) ŵ = 5.31 mm1
c = 13.542 (3) ÅT = 298 K
α = 93.07 (3)°0.40 × 0.05 × 0.05 mm
β = 96.22 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1716 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1378 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 1.00Rint = 0.063
3777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.10Δρmax = 0.71 e Å3
1716 reflectionsΔρmin = 0.75 e Å3
92 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.6256 (9)0.2461 (6)0.6051 (3)0.0419 (10)
H2A0.74370.14460.59900.063*
H2B0.71750.37550.59270.063*
H2C0.46530.21180.56190.063*
N10.0113 (11)0.7158 (8)0.8871 (4)0.0575 (13)
C40.5438 (10)0.2565 (7)0.7064 (4)0.0339 (10)
C30.3783 (10)0.4177 (7)0.7330 (3)0.0349 (10)
H30.32150.51660.68770.042*
C20.3001 (10)0.4273 (7)0.8286 (4)0.0350 (10)
C50.6331 (11)0.1113 (7)0.7719 (4)0.0389 (11)
H50.74460.00480.75270.047*
C70.3878 (12)0.2814 (8)0.8962 (4)0.0429 (12)
H70.33450.28890.96040.051*
C60.5540 (12)0.1259 (8)0.8677 (4)0.0473 (13)
H60.61460.02870.91320.057*
C10.1216 (11)0.5910 (8)0.8593 (4)0.0422 (12)
Br10.09268 (11)0.23870 (7)0.42210 (4)0.0448 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.053 (3)0.044 (2)0.032 (2)0.0176 (19)0.0038 (19)0.0003 (18)
N10.058 (3)0.052 (3)0.067 (3)0.020 (2)0.016 (3)0.004 (2)
C40.040 (3)0.028 (2)0.033 (3)0.0073 (18)0.004 (2)0.0017 (18)
C30.039 (3)0.033 (2)0.032 (3)0.010 (2)0.000 (2)0.0010 (19)
C20.030 (2)0.034 (2)0.041 (3)0.0057 (18)0.005 (2)0.002 (2)
C50.049 (3)0.034 (2)0.037 (3)0.018 (2)0.007 (2)0.001 (2)
C70.056 (3)0.039 (3)0.035 (3)0.011 (2)0.010 (2)0.000 (2)
C60.062 (4)0.040 (3)0.045 (3)0.015 (2)0.010 (3)0.014 (2)
C10.045 (3)0.040 (3)0.044 (3)0.012 (2)0.011 (2)0.000 (2)
Br10.0573 (4)0.0399 (3)0.0423 (4)0.0214 (2)0.0112 (3)0.0037 (2)
Geometric parameters (Å, º) top
N2—C41.463 (6)C3—H30.9300
N2—H2A0.8900C2—C71.384 (7)
N2—H2B0.8900C2—C11.457 (6)
N2—H2C0.8900C5—C61.388 (7)
N1—C11.121 (6)C5—H50.9300
C4—C51.365 (6)C7—C61.371 (7)
C4—C31.388 (6)C7—H70.9300
C3—C21.383 (7)C6—H60.9300
C4—N2—H2A109.5C3—C2—C1120.2 (4)
C4—N2—H2B109.5C7—C2—C1119.1 (5)
H2A—N2—H2B109.5C4—C5—C6118.6 (4)
C4—N2—H2C109.5C4—C5—H5120.7
H2A—N2—H2C109.5C6—C5—H5120.7
H2B—N2—H2C109.5C6—C7—C2119.4 (5)
C5—C4—C3122.0 (4)C6—C7—H7120.3
C5—C4—N2119.8 (4)C2—C7—H7120.3
C3—C4—N2118.2 (4)C7—C6—C5121.0 (5)
C2—C3—C4118.2 (4)C7—C6—H6119.5
C2—C3—H3120.9C5—C6—H6119.5
C4—C3—H3120.9N1—C1—C2177.0 (6)
C3—C2—C7120.7 (4)
C5—C4—C3—C20.9 (7)N2—C4—C5—C6179.6 (5)
N2—C4—C3—C2179.8 (4)C3—C2—C7—C60.0 (7)
C4—C3—C2—C70.7 (7)C1—C2—C7—C6179.5 (5)
C4—C3—C2—C1178.8 (4)C2—C7—C6—C50.6 (8)
C3—C4—C5—C60.3 (7)C4—C5—C6—C70.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Br1i0.892.593.434 (4)159
N2—H2B···Br1ii0.892.463.337 (4)169
N2—H2C···Br10.892.453.299 (4)160
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H7N2+·Br
Mr199.06
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.6396 (9), 6.1757 (12), 13.542 (3)
α, β, γ (°)93.07 (3), 96.22 (3), 97.33 (3)
V3)381.68 (13)
Z2
Radiation typeMo Kα
µ (mm1)5.31
Crystal size (mm)0.40 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.90, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
3777, 1716, 1378
Rint0.063
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.134, 1.10
No. of reflections1716
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.75

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Br1i0.892.593.434 (4)159.3
N2—H2B···Br1ii0.892.463.337 (4)169.2
N2—H2C···Br10.892.453.299 (4)160.0
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationChen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H., Huang, S.-P. & -, D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191–1194.  CAS Google Scholar
First citationWen, X.-C. (2008). Acta Cryst. E64, o1462.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712–3715.  Web of Science CSD CrossRef Google Scholar
First citationXiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051–1052.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem. 630, 1367–1370.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds