organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-methyl­benzene­sulfonamide

aSchool of Life, ShanDong University of Technology, ZiBo 255049, People's Republic of China, and bSchool of Chemical Engineering, ShanDong University of Technology, ZiBo 255049, People's Republic of China
*Correspondence e-mail: njuqss@yahoo.com.cn

(Received 5 September 2009; accepted 15 September 2009; online 26 September 2009)

In the crystal of the title compound, C7H10N2O2S, the mol­ecules are linked by two strong N—H⋯O hydrogen bonds. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond. The C/S/N plane makes a dihedral angle of 69.7 (2)° with the aromatic ring plane.

Related literature

For the anti­convulsant activity of the title compound and its derivatives, see: Monzani et al. (1985[Monzani, A., Gamberini, G., Braghiroli, D., Di Bella, M., Raffa, L. & Sandrini, M. (1985). Arch. Pharm. 318, 299-304.]); Tait et al. (1993[Tait, A., Parenti, C., Zanoli, P., Veneri, C., Truzzi, C., Brandoli, C., Baraldi, M. & Di Bella, M. (1993). Farmaco, 48, 1463-1473.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N2O2S

  • Mr = 186.23

  • Monoclinic, P 21 /c

  • a = 9.873 (5) Å

  • b = 9.151 (4) Å

  • c = 10.408 (5) Å

  • β = 114.689 (6)°

  • V = 854.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 273 K

  • 0.16 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.948, Tmax = 0.967

  • 4115 measured reflections

  • 1449 independent reflections

  • 1338 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.132

  • S = 1.10

  • 1449 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2i 0.86 2.15 3.003 (4) 174
N2—H2A⋯O1ii 0.86 2.27 2.975 (4) 139
N1—H1B⋯O2 0.86 2.60 3.080 (5) 117
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I), Figure1, was prepared and tested for anticonvulsant activity in mice, (Monzani, et al.,1985). In addition, its derivatives was studied using indomethacin as a reference drug (Tait, et al.,1993). We report here its crystal and molecular structure. The molecules are linked by two strong N—H···O generating a graph-set motif R44(16) ring (Bernstein, et al., 1995) and is stabilized by one N—H···O intramolecular hydrogen bonds (Table1, Figure 2). The C2/S1/N2 plane makes a dihedral angle of 69.7 (2)° with the aromatic ring plane.

Related literature top

For the anticonvulsant activity of the title compound andits derivatives, see: Monzani et al. (1985); Tait et al. (1993). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to method described by Monzani, et al.,1985.The single crystals suitable for X-ray diffraction were obtained by spontaneous evaporation of the solvent.

Refinement top

All the H atoms attached to C atoms were placed in geometrical positions and constrained to ride on their parent atoms with C—H distance in the range 0.93–0.98 Å, They were treated as riding atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.
[Figure 2] Fig. 2. A portion of the packing diagram for (I) showing graph-set motif R44(16) ring. For the sake clarity the atoms not involved in the motif shown have been omitted Symmetry codes: (i) x, -y+1/2, z+1/2; (ii)-x,y+1/2,-z+3/2.
2-Amino-4-methylbenzenesulfonamide top
Crystal data top
C7H10N2O2SF(000) = 392
Mr = 186.23Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3354 reflections
a = 9.873 (5) Åθ = 2.2–28.2°
b = 9.151 (4) ŵ = 0.34 mm1
c = 10.408 (5) ÅT = 273 K
β = 114.689 (6)°Block, colorless
V = 854.4 (7) Å30.16 × 0.13 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1449 independent reflections
Radiation source: fine-focus sealed tube1338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.948, Tmax = 0.967k = 1010
4115 measured reflectionsl = 129
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.701P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1449 reflectionsΔρmax = 0.56 e Å3
110 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.047 (9)
Crystal data top
C7H10N2O2SV = 854.4 (7) Å3
Mr = 186.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.873 (5) ŵ = 0.34 mm1
b = 9.151 (4) ÅT = 273 K
c = 10.408 (5) Å0.16 × 0.13 × 0.10 mm
β = 114.689 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1449 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1338 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.967Rint = 0.017
4115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.10Δρmax = 0.56 e Å3
1449 reflectionsΔρmin = 0.41 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13944 (9)0.19821 (9)0.76214 (8)0.0361 (4)
O10.1511 (3)0.0560 (3)0.8246 (3)0.0533 (8)
O20.0800 (3)0.2040 (4)0.6109 (3)0.0603 (9)
N10.2315 (4)0.5060 (4)0.6773 (4)0.0604 (10)
H1A0.25660.58670.65100.073*
H1B0.13910.48150.64500.073*
N20.0260 (3)0.2896 (3)0.8048 (3)0.0412 (7)
H2A0.05140.32930.74020.049*
H2B0.04260.29900.89240.049*
C10.3488 (4)0.4078 (4)0.7793 (3)0.0357 (7)
C20.3186 (3)0.2754 (4)0.8318 (3)0.0342 (7)
C30.4324 (4)0.1967 (4)0.9361 (4)0.0396 (8)
H30.40980.11210.97270.048*
C40.5787 (4)0.2433 (4)0.9859 (4)0.0443 (9)
H40.65430.19201.05710.053*
C50.6107 (3)0.3669 (4)0.9282 (4)0.0417 (8)
C60.4979 (4)0.4501 (4)0.8300 (4)0.0406 (8)
H60.52210.53620.79690.049*
C70.7610 (3)0.4151 (5)0.9737 (4)0.0497 (9)
H7A0.77950.49471.03890.074*
H7B0.77710.44710.89330.074*
H7C0.82760.33601.01930.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0355 (6)0.0364 (6)0.0356 (6)0.0058 (3)0.0140 (4)0.0071 (3)
O10.0470 (15)0.0348 (14)0.0722 (18)0.0059 (11)0.0191 (13)0.0030 (12)
O20.0540 (16)0.086 (2)0.0376 (14)0.0211 (14)0.0163 (12)0.0185 (13)
N10.056 (2)0.063 (2)0.062 (2)0.0026 (16)0.0245 (17)0.0197 (17)
N20.0373 (16)0.0455 (17)0.0419 (15)0.0014 (12)0.0174 (13)0.0004 (12)
C10.0368 (16)0.0390 (17)0.0348 (15)0.0007 (13)0.0184 (13)0.0019 (13)
C20.0329 (16)0.0357 (16)0.0352 (16)0.0012 (12)0.0155 (13)0.0053 (12)
C30.0414 (18)0.0327 (17)0.0435 (18)0.0024 (13)0.0165 (15)0.0001 (13)
C40.0360 (18)0.0431 (19)0.0474 (19)0.0067 (14)0.0109 (15)0.0027 (16)
C50.0313 (17)0.047 (2)0.0467 (18)0.0029 (14)0.0165 (14)0.0113 (15)
C60.0395 (17)0.0420 (18)0.0443 (18)0.0051 (14)0.0213 (15)0.0005 (15)
C70.0246 (16)0.058 (2)0.062 (2)0.0056 (15)0.0139 (16)0.0010 (18)
Geometric parameters (Å, º) top
S1—O21.433 (3)C2—C31.393 (5)
S1—O11.438 (3)C3—C41.383 (5)
S1—N21.602 (3)C3—H30.9300
S1—C21.756 (3)C4—C51.378 (6)
N1—C11.500 (5)C4—H40.9300
N1—H1A0.8600C5—C61.383 (5)
N1—H1B0.8600C5—C71.426 (4)
N2—H2A0.8600C6—H60.9300
N2—H2B0.8600C7—H7A0.9600
C1—C61.395 (5)C7—H7B0.9600
C1—C21.412 (5)C7—H7C0.9600
O2—S1—O1116.68 (18)C4—C3—C2120.6 (3)
O2—S1—N2105.80 (18)C4—C3—H3119.7
O1—S1—N2106.29 (16)C2—C3—H3119.7
O2—S1—C2108.58 (16)C5—C4—C3118.9 (3)
O1—S1—C2107.49 (16)C5—C4—H4120.5
N2—S1—C2112.08 (16)C3—C4—H4120.5
C1—N1—H1A120.0C4—C5—C6120.9 (3)
C1—N1—H1B120.0C4—C5—C7120.3 (3)
H1A—N1—H1B120.0C6—C5—C7118.7 (4)
S1—N2—H2A120.0C5—C6—C1121.5 (3)
S1—N2—H2B120.0C5—C6—H6119.2
H2A—N2—H2B120.0C1—C6—H6119.2
C6—C1—C2116.9 (3)C5—C7—H7A109.5
C6—C1—N1118.9 (3)C5—C7—H7B109.5
C2—C1—N1124.3 (3)H7A—C7—H7B109.5
C3—C2—C1120.9 (3)C5—C7—H7C109.5
C3—C2—S1117.4 (3)H7A—C7—H7C109.5
C1—C2—S1121.6 (3)H7B—C7—H7C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2i0.862.153.003 (4)174
N2—H2A···O1ii0.862.272.975 (4)139
N1—H1B···O20.862.603.080 (5)117
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H10N2O2S
Mr186.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)9.873 (5), 9.151 (4), 10.408 (5)
β (°) 114.689 (6)
V3)854.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.16 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.948, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
4115, 1449, 1338
Rint0.017
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.132, 1.10
No. of reflections1449
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.41

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2i0.862.153.003 (4)173.5
N2—H2A···O1ii0.862.272.975 (4)138.6
N1—H1B···O20.862.603.080 (5)116.7
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+3/2.
 

Acknowledgements

This project was sponsored by the ShanDong Province Science & Technology Innovation Foundation.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMonzani, A., Gamberini, G., Braghiroli, D., Di Bella, M., Raffa, L. & Sandrini, M. (1985). Arch. Pharm. 318, 299–304.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTait, A., Parenti, C., Zanoli, P., Veneri, C., Truzzi, C., Brandoli, C., Baraldi, M. & Di Bella, M. (1993). Farmaco, 48, 1463–1473.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds