organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Eth­­oxy-2-(1,3-thia­zol-2-yl)isoindolin-1-one

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 13 September 2009; accepted 25 September 2009; online 30 September 2009)

In the title compound, C13H12N2O2S, the dihedral angles between the isoindolone ring system and the thia­zole ring and the eth­oxy group are 6.50 (11) and 89.0 (2)°, respectively.

Related literature

For general background to isoindolin-1-one derivatives, see: Gai et al. (2003[Gai, X., Grigg, R., Khamnaen, T., Rajviroongit, S., Sridharan, V., Zhang, L., Collard, S. & Keep, A. (2003). Tetrahedron Lett. 44, 7441-7443.]). For hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O2S

  • Mr = 260.31

  • Monoclinic, P 21 /n

  • a = 8.0933 (11) Å

  • b = 9.1406 (14) Å

  • c = 17.2077 (19) Å

  • β = 98.720 (1)°

  • V = 1258.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.50 × 0.49 × 0.47 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.884, Tmax = 0.891

  • 6305 measured reflections

  • 2236 independent reflections

  • 1554 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.04

  • 2236 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), was formed by accident, instead of the organotin compound containing schiff base which was expected. Isoindolin-1-one derivatives have been demonstrated to possess anxiolytic activity and are of interest as sedatives, hypnotics and muscle relaxants. In addition,the isoindolone moiety also features in anti-cancer drug candidates including protein kinase inhibitors(Gai et al. 2003). We have synthesized the title compound(I) and its crystal structure is reported herein.The molecular structure of (I) is shown in Fig.1. The dihedral angles between the isoindolone ring system and thiazole ring and oxyethyl group are 6.50 (11) and 89.0 (2)° respectively.The sum of bond angles around atom N1(359.6 °) indicates that the atom N1 is in sp2 hybridized state (Beddoes et al. 1986). The crystal packing is stabilized mainly by van der Waals interactions.

Related literature top

For general background to isoindolin-1-one derivatives, see: Gai et al. (2003). For hybridization, see: Beddoes et al. (1986).

Experimental top

(E)-2-((thiazol-2-ylimino)methyl)benzoic acid (4 mmol) and sodium ethoxide (4 mmol) were added to a stirred solution of ethanol (30 ml) in a Schlenk flask and stirred for 0.5 h. Chlorotriphenyltin (4 mmol) was then added to the reactor and the reaction mixture was heated under reflux for 6 h. The resulting clear solution was evaporated under vacuum. The product was crystallized from a mixed of dichloromethane/petroleum (1:1) to afford the title compound unexpectedly. Anal. Calcd (%) for C13H12N2O2S (Mr = 260.31): C, 59.98; H, 4.65; N, 10.76; O, 12.29; S, 12.32 Found (%): C, 60.00; H, 4.62; N, 10.74; O, 12.31; S, 12.30

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.96, 0.97 and 0.98 Å for aromatic, methyl, methylene and methine H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = x Ueq(C) where x =1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
3-Ethoxy-2-(1,3-thiazol-2-yl)isoindolin-1-one top
Crystal data top
C13H12N2O2SF(000) = 544
Mr = 260.31Dx = 1.374 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2091 reflections
a = 8.0933 (11) Åθ = 2.5–26.6°
b = 9.1406 (14) ŵ = 0.25 mm1
c = 17.2077 (19) ÅT = 298 K
β = 98.720 (1)°Block, colourless
V = 1258.3 (3) Å30.50 × 0.49 × 0.47 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2236 independent reflections
Radiation source: fine-focus sealed tube1554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.884, Tmax = 0.891k = 108
6305 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.5551P]
where P = (Fo2 + 2Fc2)/3
2236 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H12N2O2SV = 1258.3 (3) Å3
Mr = 260.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0933 (11) ŵ = 0.25 mm1
b = 9.1406 (14) ÅT = 298 K
c = 17.2077 (19) Å0.50 × 0.49 × 0.47 mm
β = 98.720 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2236 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1554 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.891Rint = 0.031
6305 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
2236 reflectionsΔρmin = 0.24 e Å3
164 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40181 (10)0.62694 (9)0.23706 (4)0.0734 (3)
N10.5832 (2)0.5184 (2)0.14152 (12)0.0558 (6)
N20.3056 (2)0.4365 (2)0.11652 (11)0.0482 (5)
O10.0910 (2)0.5044 (2)0.18270 (11)0.0663 (5)
O20.44903 (19)0.23876 (18)0.06204 (9)0.0515 (4)
C10.4324 (3)0.5174 (3)0.15857 (14)0.0479 (6)
C20.6825 (3)0.6082 (3)0.19276 (15)0.0603 (7)
H20.79530.62170.18990.072*
C30.6079 (4)0.6747 (4)0.24650 (17)0.0713 (8)
H30.66080.73870.28430.086*
C40.1397 (3)0.4400 (3)0.12897 (15)0.0517 (6)
C50.0457 (3)0.3538 (3)0.06545 (14)0.0491 (6)
C60.1552 (3)0.3004 (3)0.01772 (14)0.0484 (6)
C70.3314 (3)0.3506 (3)0.04657 (13)0.0463 (6)
H70.36680.41690.00750.056*
C80.1242 (3)0.3255 (3)0.04990 (16)0.0580 (7)
H80.19710.36250.08190.070*
C90.1811 (3)0.2406 (3)0.01463 (18)0.0677 (8)
H90.29470.22000.02650.081*
C100.0725 (4)0.1850 (3)0.06238 (18)0.0689 (8)
H100.11400.12770.10560.083*
C110.0976 (3)0.2142 (3)0.04631 (16)0.0605 (7)
H110.17080.17640.07800.073*
C120.4196 (4)0.1366 (3)0.12151 (17)0.0682 (8)
H12A0.30490.10230.11150.082*
H12B0.43810.18330.17270.082*
C130.5357 (4)0.0121 (3)0.12016 (18)0.0747 (9)
H13A0.51350.03600.07010.112*
H13B0.52030.05590.16100.112*
H13C0.64880.04730.12860.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0675 (5)0.0909 (6)0.0664 (5)0.0092 (4)0.0252 (4)0.0195 (4)
N10.0455 (12)0.0655 (14)0.0595 (13)0.0005 (10)0.0185 (10)0.0066 (11)
N20.0414 (11)0.0518 (12)0.0558 (12)0.0053 (9)0.0216 (9)0.0009 (10)
O10.0562 (11)0.0790 (13)0.0707 (12)0.0133 (10)0.0320 (9)0.0043 (10)
O20.0436 (9)0.0534 (10)0.0618 (10)0.0085 (8)0.0218 (8)0.0015 (8)
C10.0495 (14)0.0485 (14)0.0489 (13)0.0101 (11)0.0179 (11)0.0071 (11)
C20.0508 (15)0.0687 (18)0.0615 (16)0.0015 (13)0.0088 (13)0.0059 (14)
C30.0709 (19)0.082 (2)0.0600 (17)0.0074 (16)0.0064 (14)0.0130 (16)
C40.0445 (14)0.0542 (15)0.0612 (15)0.0114 (12)0.0237 (12)0.0133 (13)
C50.0424 (13)0.0491 (14)0.0590 (15)0.0065 (11)0.0177 (11)0.0150 (12)
C60.0435 (14)0.0473 (14)0.0570 (15)0.0023 (11)0.0164 (11)0.0109 (12)
C70.0408 (13)0.0480 (14)0.0536 (14)0.0065 (11)0.0183 (11)0.0053 (11)
C80.0441 (15)0.0623 (17)0.0712 (18)0.0083 (13)0.0200 (13)0.0185 (15)
C90.0441 (15)0.076 (2)0.084 (2)0.0033 (14)0.0124 (14)0.0152 (17)
C100.0607 (18)0.0698 (19)0.0747 (19)0.0109 (15)0.0059 (14)0.0009 (16)
C110.0529 (16)0.0644 (17)0.0672 (17)0.0014 (13)0.0186 (13)0.0014 (15)
C120.0670 (18)0.0639 (18)0.0779 (19)0.0119 (14)0.0242 (15)0.0180 (15)
C130.078 (2)0.0633 (19)0.078 (2)0.0156 (16)0.0028 (16)0.0035 (16)
Geometric parameters (Å, º) top
S1—C31.708 (3)C6—C111.377 (4)
S1—C11.729 (2)C6—C71.509 (3)
N1—C11.298 (3)C7—H70.9800
N1—C21.372 (3)C8—C91.376 (4)
N2—C11.378 (3)C8—H80.9300
N2—C41.392 (3)C9—C101.388 (4)
N2—C71.478 (3)C9—H90.9300
O1—C41.211 (3)C10—C111.388 (4)
O2—C71.395 (3)C10—H100.9300
O2—C121.432 (3)C11—H110.9300
C2—C31.326 (4)C12—C131.479 (4)
C2—H20.9300C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.464 (4)C13—H13A0.9600
C5—C61.385 (3)C13—H13B0.9600
C5—C81.385 (3)C13—H13C0.9600
C3—S1—C188.22 (13)O2—C7—H7108.8
C1—N1—C2109.8 (2)N2—C7—H7108.8
C1—N2—C4124.5 (2)C6—C7—H7108.8
C1—N2—C7121.80 (17)C9—C8—C5117.6 (2)
C4—N2—C7113.3 (2)C9—C8—H8121.2
C7—O2—C12115.58 (17)C5—C8—H8121.2
N1—C1—N2122.4 (2)C8—C9—C10121.3 (3)
N1—C1—S1115.1 (2)C8—C9—H9119.4
N2—C1—S1122.52 (17)C10—C9—H9119.4
C3—C2—N1116.0 (3)C11—C10—C9120.7 (3)
C3—C2—H2122.0C11—C10—H10119.7
N1—C2—H2122.0C9—C10—H10119.7
C2—C3—S1111.0 (2)C6—C11—C10118.3 (2)
C2—C3—H3124.5C6—C11—H11120.8
S1—C3—H3124.5C10—C11—H11120.8
O1—C4—N2124.2 (3)O2—C12—C13108.4 (2)
O1—C4—C5129.8 (2)O2—C12—H12A110.0
N2—C4—C5106.1 (2)C13—C12—H12A110.0
C6—C5—C8121.7 (3)O2—C12—H12B110.0
C6—C5—C4109.0 (2)C13—C12—H12B110.0
C8—C5—C4129.3 (2)H12A—C12—H12B108.4
C11—C6—C5120.4 (2)C12—C13—H13A109.5
C11—C6—C7128.8 (2)C12—C13—H13B109.5
C5—C6—C7110.8 (2)H13A—C13—H13B109.5
O2—C7—N2114.23 (19)C12—C13—H13C109.5
O2—C7—C6115.0 (2)H13A—C13—H13C109.5
N2—C7—C6100.76 (17)H13B—C13—H13C109.5

Experimental details

Crystal data
Chemical formulaC13H12N2O2S
Mr260.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.0933 (11), 9.1406 (14), 17.2077 (19)
β (°) 98.720 (1)
V3)1258.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.50 × 0.49 × 0.47
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.884, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
6305, 2236, 1554
Rint0.031
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.04
No. of reflections2236
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We acknowledge financial support by the Natural Science Foundation of China (No. 20771053) and the Natural Science Foundation of Shandong Province (Y2008B48).

References

First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationGai, X., Grigg, R., Khamnaen, T., Rajviroongit, S., Sridharan, V., Zhang, L., Collard, S. & Keep, A. (2003). Tetrahedron Lett. 44, 7441–7443.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds