organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­nitro­benzoyl chloride

aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: wywhy007@yahoo.com.cn

(Received 27 July 2009; accepted 8 September 2009; online 12 September 2009)

The carbonyl chloride group in the title compound, C7H3ClN2O5, is disordered over two orientations with occupancies of 0.505 (5) and 0.495 (5). The mol­ecule is approximately planar, the dihedral angle between the carbonyl chloride plane and benzene ring being 9.6 (4)° in the major disorder component and 7.1 (4)° in the minor component. The nitro group at the 5-position is twisted, forming a dihedral angle of 6.7 (4)°. The crystal packing is stabilized by C—H⋯O hydrogen bonds.

Related literature

For general background to 3,5-dinitro­benzoyl chloride, see: Gennaro et al. (1993[Gennaro, M. C., Abrigo, C., Marengo, E. & Liberatori, A. (1993). J. Liq. Chromatogr. 16, 2715-2730.]); Liu & Wang (2000[Liu, X. J. & Wang, S. Q. (2000). Chin. J. Pharm. 31, 471-472.]); Saunders & Stacey (1942[Saunders, B. C. & Stacey, G. L. (1942). J. Biochem. 34, 368-375.]).

[Scheme 1]

Experimental

Crystal data
  • C7H3ClN2O5

  • Mr = 230.56

  • Orthorhombic, P n a 21

  • a = 18.295 (4) Å

  • b = 8.3924 (19) Å

  • c = 5.7362 (13) Å

  • V = 880.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 93 K

  • 0.37 × 0.33 × 0.27 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: none

  • 6904 measured reflections

  • 2011 independent reflections

  • 1835 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.03

  • 2011 reflections

  • 164 parameters

  • 29 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 905 Friedel pairs

  • Flack parameter: 0.08 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O4i 0.95 2.44 3.386 (3) 173
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3,5-Dinitrobenzoyl chloride is a useful disinfectant and preservative (Saunders et al., 1942; Liu et al., 2000). It was also used as a derivatization reagent for azide determination by capillary electrophoresis (Gennaro et al., 1993). We report here the crystal structure of the title compound.

The carbonyl chloride group is disordered over two orientations (Fig. 1). Except for a long N1—O3 distance [1.339 (3) Å] all other bond lengths and angles are within expected ranges. The molecule is approximately planar. The plane of the carbonyl chloride group forms a dihedral angle of 9.6 (4)° with the benzene ring in the major component [7.1 (4)° in the minor component]. The N1/O2/O3 and N2/O4/O5 nitro groups form dihedral angles of 1.9 (3) and 6.7 (4)°, respectively, with the benzene ring.

The crystal packing is stabilized by C—H···O hydrogen bonds (Table 1).

Related literature top

For general background to 3,5-dinitrobenzoyl chloride, see: Gennaro et al. (1993); Liu et al. (2000); Saunders et al. (1942).

Experimental top

A sample of commercial 3,5-dinitrobenzoylchloride (Aldrich) was crystallized by slow evaporation of a solution in carbon tetrachloride.

Refinement top

The carbonyl chloride group is disordered over two orientations with occupancies of 0.505 (5) and 0.495 (5). The CO distance involving disordered atoms was restrained to 1.22 (1) Å and in each disorder component and the carbonyl chloride group was restrained to be planar. The displacement parameters of atoms CL1', O1', O1 and O3 were restrained to an approximate isotropic behaviour. H atoms were positioned geometrically (C—H = 0.95 Å) and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku 2004); cell refinement: RAPID-AUTO (Rigaku 2004); data reduction: RAPID-AUTO (Rigaku 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Both disorder components are shown.
3,5-Dinitrobenzoyl chloride top
Crystal data top
C7H3ClN2O5F(000) = 464
Mr = 230.56Dx = 1.739 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2915 reflections
a = 18.295 (4) Åθ = 3.3–27.5°
b = 8.3924 (19) ŵ = 0.44 mm1
c = 5.7362 (13) ÅT = 93 K
V = 880.7 (3) Å3Block, colourless
Z = 40.37 × 0.33 × 0.27 mm
Data collection top
Rigaku SPIDER
diffractometer
1835 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.025
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ω scansh = 2322
6904 measured reflectionsk = 1010
2011 independent reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0626P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2011 reflectionsΔρmax = 0.40 e Å3
164 parametersΔρmin = 0.22 e Å3
29 restraintsAbsolute structure: Flack (1983), 905 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (9)
Crystal data top
C7H3ClN2O5V = 880.7 (3) Å3
Mr = 230.56Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 18.295 (4) ŵ = 0.44 mm1
b = 8.3924 (19) ÅT = 93 K
c = 5.7362 (13) Å0.37 × 0.33 × 0.27 mm
Data collection top
Rigaku SPIDER
diffractometer
1835 reflections with I > 2σ(I)
6904 measured reflectionsRint = 0.025
2011 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.40 e Å3
S = 1.03Δρmin = 0.22 e Å3
2011 reflectionsAbsolute structure: Flack (1983), 905 Friedel pairs
164 parametersAbsolute structure parameter: 0.08 (9)
29 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.43221 (12)0.5812 (3)0.3714 (5)0.0418 (5)0.505 (5)
C70.3864 (3)0.4499 (11)0.5519 (12)0.0289 (16)0.505 (5)
O10.3635 (5)0.4892 (13)0.7358 (18)0.098 (5)0.505 (5)
Cl1'0.37524 (15)0.5156 (3)0.7640 (4)0.0442 (5)0.495 (5)
C7'0.4064 (3)0.4534 (13)0.4960 (13)0.035 (2)0.495 (5)
O1'0.4432 (5)0.5374 (11)0.377 (2)0.083 (3)0.495 (5)
C10.38140 (12)0.2885 (3)0.4413 (4)0.0325 (5)
C20.41455 (11)0.2335 (3)0.2394 (4)0.0324 (5)
H20.44680.29950.15260.039*
C30.39917 (11)0.0787 (2)0.1677 (4)0.0277 (4)
C40.35290 (10)0.0199 (2)0.2878 (4)0.0276 (4)
H40.34280.12510.23550.033*
C50.32173 (11)0.0400 (2)0.4872 (4)0.0288 (4)
C60.33439 (11)0.1924 (2)0.5677 (4)0.0320 (5)
H60.31150.23030.70570.038*
N10.43482 (9)0.0200 (2)0.0448 (3)0.0308 (4)
N20.27342 (10)0.0636 (2)0.6268 (3)0.0361 (4)
O20.47388 (8)0.10880 (19)0.1549 (3)0.0384 (4)
O30.42041 (8)0.1304 (2)0.1076 (3)0.0426 (4)
O40.25855 (9)0.19494 (18)0.5508 (3)0.0396 (4)
O50.25255 (10)0.0136 (3)0.8142 (4)0.0579 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0443 (8)0.0269 (9)0.0541 (9)0.0110 (6)0.0055 (7)0.0027 (8)
C70.033 (3)0.026 (2)0.028 (3)0.006 (3)0.003 (3)0.008 (3)
O10.108 (7)0.085 (6)0.100 (7)0.003 (4)0.004 (5)0.006 (4)
Cl1'0.0540 (9)0.0372 (8)0.0414 (9)0.0016 (7)0.0034 (7)0.0000 (8)
C7'0.029 (3)0.044 (3)0.034 (4)0.001 (3)0.005 (3)0.014 (3)
O1'0.104 (6)0.056 (5)0.088 (5)0.021 (4)0.030 (4)0.030 (4)
C10.0386 (11)0.0261 (10)0.0328 (11)0.0017 (8)0.0118 (9)0.0037 (9)
C20.0353 (11)0.0284 (10)0.0336 (11)0.0030 (8)0.0078 (9)0.0027 (10)
C30.0295 (10)0.0283 (10)0.0253 (10)0.0033 (7)0.0041 (8)0.0008 (8)
C40.0286 (9)0.0258 (9)0.0286 (11)0.0003 (7)0.0061 (8)0.0030 (8)
C50.0280 (9)0.0315 (10)0.0268 (10)0.0007 (8)0.0032 (8)0.0012 (9)
C60.0352 (11)0.0325 (10)0.0283 (10)0.0055 (9)0.0061 (9)0.0048 (9)
N10.0333 (9)0.0310 (9)0.0281 (9)0.0011 (7)0.0009 (7)0.0007 (8)
N20.0370 (10)0.0394 (10)0.0320 (10)0.0078 (8)0.0004 (9)0.0085 (9)
O20.0372 (8)0.0431 (9)0.0348 (9)0.0005 (6)0.0045 (7)0.0076 (7)
O30.0345 (8)0.0728 (12)0.0205 (7)0.0114 (7)0.0055 (6)0.0008 (9)
O40.0452 (9)0.0383 (8)0.0355 (8)0.0115 (7)0.0003 (7)0.0075 (7)
O50.0665 (12)0.0637 (13)0.0435 (12)0.0216 (10)0.0226 (9)0.0250 (10)
Geometric parameters (Å, º) top
Cl1—C71.728 (8)C3—N11.468 (3)
C7—O11.182 (9)C4—C51.374 (3)
C7—C11.499 (9)C4—H40.95
Cl1'—C7'1.720 (9)C5—C61.380 (3)
C7'—O1'1.190 (8)C5—N21.476 (3)
C7'—C11.491 (11)C6—H60.95
C1—C61.384 (3)N1—O21.210 (2)
C1—C21.387 (3)N1—O31.339 (3)
C2—C31.391 (3)N2—O51.216 (3)
C2—H20.95N2—O41.216 (2)
C3—C41.370 (3)
O1—C7—C1127.5 (9)C2—C3—N1117.96 (19)
O1—C7—Cl1121.9 (9)C3—C4—C5117.00 (19)
C1—C7—Cl1110.6 (4)C3—C4—H4121.5
O1'—C7'—C1127.1 (9)C5—C4—H4121.5
O1'—C7'—Cl1'121.3 (10)C4—C5—C6123.3 (2)
C1—C7'—Cl1'111.6 (5)C4—C5—N2118.99 (18)
C6—C1—C2121.02 (19)C6—C5—N2117.72 (19)
C6—C1—C7'128.4 (3)C5—C6—C1118.0 (2)
C2—C1—C7'110.5 (3)C5—C6—H6121.0
C6—C1—C7110.1 (3)C1—C6—H6121.0
C2—C1—C7128.9 (3)O2—N1—O3123.80 (18)
C1—C2—C3118.0 (2)O2—N1—C3119.29 (18)
C1—C2—H2121.0O3—N1—C3116.89 (16)
C3—C2—H2121.0O5—N2—O4124.1 (2)
C4—C3—C2122.7 (2)O5—N2—C5117.64 (18)
C4—C3—N1119.31 (18)O4—N2—C5118.26 (18)
O1'—C7'—C1—C6174.9 (4)C2—C3—C4—C50.4 (3)
Cl1'—C7'—C1—C65.2 (4)N1—C3—C4—C5179.13 (17)
O1'—C7'—C1—C27.5 (3)C3—C4—C5—C60.6 (3)
Cl1'—C7'—C1—C2172.4 (2)C3—C4—C5—N2177.98 (18)
O1'—C7'—C1—C7161.7 (9)C4—C5—C6—C10.6 (3)
Cl1'—C7'—C1—C718.3 (8)N2—C5—C6—C1178.06 (18)
O1—C7—C1—C610.2 (3)C2—C1—C6—C50.3 (3)
Cl1—C7—C1—C6169.9 (2)C7'—C1—C6—C5177.1 (3)
O1—C7—C1—C2171.9 (4)C7—C1—C6—C5178.4 (2)
Cl1—C7—C1—C28.1 (4)C4—C3—N1—O2177.70 (19)
O1—C7—C1—C7'158.9 (9)C2—C3—N1—O22.7 (3)
Cl1—C7—C1—C7'21.1 (8)C4—C3—N1—O31.0 (3)
C6—C1—C2—C30.0 (3)C2—C3—N1—O3178.60 (18)
C7'—C1—C2—C3177.8 (2)C4—C5—N2—O5172.6 (2)
C7—C1—C2—C3177.8 (3)C6—C5—N2—O56.1 (3)
C1—C2—C3—C40.1 (3)C4—C5—N2—O45.4 (3)
C1—C2—C3—N1179.43 (17)C6—C5—N2—O4175.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.952.443.386 (3)173
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H3ClN2O5
Mr230.56
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)93
a, b, c (Å)18.295 (4), 8.3924 (19), 5.7362 (13)
V3)880.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.37 × 0.33 × 0.27
Data collection
DiffractometerRigaku SPIDER
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6904, 2011, 1835
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.03
No. of reflections2011
No. of parameters164
No. of restraints29
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.22
Absolute structureFlack (1983), 905 Friedel pairs
Absolute structure parameter0.08 (9)

Computer programs: RAPID-AUTO (Rigaku 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.952.443.386 (3)173
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Jiangsu Institute of Nuclear Medicine.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGennaro, M. C., Abrigo, C., Marengo, E. & Liberatori, A. (1993). J. Liq. Chromatogr. 16, 2715–2730.  CrossRef CAS Web of Science Google Scholar
First citationLiu, X. J. & Wang, S. Q. (2000). Chin. J. Pharm. 31, 471–472.  CAS Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSaunders, B. C. & Stacey, G. L. (1942). J. Biochem. 34, 368–375.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds