organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Cyano­anilinium tetra­fluoro­borate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and Department of Physics, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 6 August 2009; accepted 18 August 2009; online 9 September 2009)

In the title compound, C7H7N2+·BF4, the non-H atoms of the cation are almost coplanar (r.m.s. deviation = 0.035 Å). The cations and anions are connected by inter­molecular N—H⋯F and N—H⋯N hydrogen bonds, forming a two-dimensional network parallel to (10[\overline{1}]).

Related literature

For the application of metal-organic coordination compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Chen et al. (2000[Chen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010-4012.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]); Xiong et al. (1999[Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051-1052.]); Xie et al. (2003[Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712-3715.]); Zhang et al. (2001[Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118-4121.]). For general background to nitrile derivatives, see: Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Wang et al. (2002[Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191-1194.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N2+·BF4

  • Mr = 205.96

  • Monoclinic, P 21 /n

  • a = 10.971 (2) Å

  • b = 7.3565 (15) Å

  • c = 11.022 (2) Å

  • β = 103.11 (3)°

  • V = 866.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.96, Tmax = 1.00 (expected range = 0.931–0.969)

  • 8625 measured reflections

  • 1978 independent reflections

  • 1417 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.141

  • S = 1.08

  • 1978 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.89 2.54 3.179 (3) 130
N1—H1A⋯F4ii 0.89 2.12 2.896 (2) 146
N1—H1B⋯F4iii 0.89 2.21 2.993 (2) 147
N1—H1C⋯F3 0.89 1.95 2.799 (2) 160
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Fu et al., 2007; Chen et al., 2000; Fu & Xiong (2008); Xie et al., 2003; Zhang et al.,2001; Xiong et al., 1999). Nitrile derivatives are a class of excellent ligands for the construction of novel metal-organic frameworks. (Wang et al. 2002; Fu et al., 2008). We report here the crystal structure of the title compound, 2-cyanobenzenaminium tetrafluoroborate.

In the 2-cyanobenzenaminium cation (Fig.1), the nitrile group and the benzene ring are almost coplanar. The nitrile group C7N2 bond length of 1.150 (3) Å is within the normal range.

In the crystal structure, all the amine group H atoms are involved in N—H···F hydrogen bonds (Table 1) with F atoms of the BF4- anion. These hydrogen bonds along with N—H···N hydrogen bonds link the ionic units into a two-dimensional network (Fig. 2) parallel to the (101).

Related literature top

For the application of metal-organic coordination compounds, see: Fu et al. (2007); Chen et al. (2000); Fu & Xiong (2008); Xiong et al. (1999); Xie et al. (2003); Zhang et al. (2001). For general background to nitrile derivatives, see: Fu et al. (2008); Wang et al. (2002).

Experimental top

The commercial 2-aminobenzonitrile (3 mmol, 0.55 g) and HBF4 (0.5 ml) were dissolved in ethanol (20 ml). Colourless block-shaped crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation at room temperature.

Refinement top

All H atoms attached to C and N atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å, N-H = 0.89 Å and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N). A rotating-group model was used for the -NH3 group.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. C-bound H atoms have been omitted for clarity
2-Cyanoanilinium tetrafluoroborate top
Crystal data top
C7H7N2+·BF4F(000) = 416
Mr = 205.96Dx = 1.579 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1417 reflections
a = 10.971 (2) Åθ = 3.4–27.5°
b = 7.3565 (15) ŵ = 0.16 mm1
c = 11.022 (2) ÅT = 298 K
β = 103.11 (3)°Block, colourless
V = 866.4 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
1978 independent reflections
Radiation source: fine-focus sealed tube1417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
CCD profile fitting scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.96, Tmax = 1.00l = 1414
8625 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.4139P]
where P = (Fo2 + 2Fc2)/3
1978 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C7H7N2+·BF4V = 866.4 (3) Å3
Mr = 205.96Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.971 (2) ŵ = 0.16 mm1
b = 7.3565 (15) ÅT = 298 K
c = 11.022 (2) Å0.30 × 0.25 × 0.20 mm
β = 103.11 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1978 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1417 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 1.00Rint = 0.041
8625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.08Δρmax = 0.32 e Å3
1978 reflectionsΔρmin = 0.32 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F40.36113 (13)0.72246 (19)0.25229 (13)0.0500 (4)
F30.48625 (14)0.7353 (2)0.44366 (13)0.0575 (4)
N10.59296 (16)0.6600 (3)0.69414 (15)0.0337 (4)
H1A0.61820.54820.68120.051*
H1B0.65890.72750.72930.051*
H1C0.55480.70940.62180.051*
F20.34337 (15)0.9602 (2)0.37300 (16)0.0625 (5)
C10.50557 (18)0.6518 (3)0.77689 (18)0.0302 (5)
F10.51445 (14)0.9330 (3)0.29556 (18)0.0737 (6)
C20.5337 (2)0.7425 (3)0.89064 (19)0.0348 (5)
C60.3969 (2)0.5547 (3)0.7402 (2)0.0437 (6)
H60.37920.49390.66430.052*
N20.7317 (2)0.9429 (3)0.9488 (2)0.0586 (6)
C70.6444 (2)0.8517 (3)0.9248 (2)0.0428 (6)
B10.4282 (2)0.8402 (3)0.3425 (2)0.0359 (6)
C40.3405 (3)0.6365 (4)0.9311 (3)0.0580 (8)
H40.28400.63130.98240.070*
C30.4507 (2)0.7323 (3)0.9687 (2)0.0483 (6)
H30.46930.78971.04580.058*
C50.3138 (2)0.5485 (4)0.8180 (3)0.0570 (7)
H50.23930.48420.79340.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F40.0566 (9)0.0453 (8)0.0442 (8)0.0023 (6)0.0037 (7)0.0056 (6)
F30.0587 (9)0.0613 (10)0.0455 (8)0.0069 (7)0.0029 (7)0.0162 (7)
N10.0376 (10)0.0351 (9)0.0291 (9)0.0028 (8)0.0092 (7)0.0004 (7)
F20.0658 (9)0.0467 (9)0.0762 (11)0.0167 (7)0.0186 (8)0.0097 (8)
C10.0324 (10)0.0288 (10)0.0303 (10)0.0072 (8)0.0091 (8)0.0036 (8)
F10.0435 (8)0.0830 (12)0.0922 (13)0.0162 (8)0.0107 (8)0.0342 (10)
C20.0420 (11)0.0316 (11)0.0311 (11)0.0065 (9)0.0091 (9)0.0001 (9)
C60.0356 (12)0.0447 (14)0.0491 (14)0.0034 (10)0.0058 (10)0.0046 (11)
N20.0597 (14)0.0587 (14)0.0558 (14)0.0010 (12)0.0095 (11)0.0178 (11)
C70.0542 (15)0.0392 (13)0.0347 (12)0.0088 (12)0.0094 (11)0.0075 (10)
B10.0324 (12)0.0315 (12)0.0412 (13)0.0004 (10)0.0030 (10)0.0053 (11)
C40.0609 (17)0.0541 (17)0.0729 (19)0.0135 (14)0.0445 (15)0.0118 (14)
C30.0670 (16)0.0430 (13)0.0422 (13)0.0147 (12)0.0277 (12)0.0018 (10)
C50.0375 (13)0.0529 (16)0.085 (2)0.0011 (12)0.0223 (13)0.0022 (14)
Geometric parameters (Å, º) top
F4—B11.396 (3)C2—C31.389 (3)
F3—B11.387 (3)C2—C71.434 (3)
N1—C11.467 (2)C6—C51.387 (4)
N1—H1A0.89C6—H60.93
N1—H1B0.89N2—C71.150 (3)
N1—H1C0.89C4—C51.376 (4)
F2—B11.379 (3)C4—C31.379 (4)
C1—C61.370 (3)C4—H40.93
C1—C21.392 (3)C3—H30.93
F1—B11.361 (3)C5—H50.93
C1—N1—H1A109.5F1—B1—F2109.7 (2)
C1—N1—H1B109.5F1—B1—F3110.68 (19)
H1A—N1—H1B109.5F2—B1—F3111.9 (2)
C1—N1—H1C109.5F1—B1—F4109.9 (2)
H1A—N1—H1C109.5F2—B1—F4107.16 (18)
H1B—N1—H1C109.5F3—B1—F4107.42 (19)
C6—C1—C2121.1 (2)C5—C4—C3120.3 (2)
C6—C1—N1119.06 (19)C5—C4—H4119.9
C2—C1—N1119.87 (19)C3—C4—H4119.9
C3—C2—C1119.3 (2)C4—C3—C2119.7 (2)
C3—C2—C7120.2 (2)C4—C3—H3120.2
C1—C2—C7120.42 (19)C2—C3—H3120.2
C1—C6—C5119.0 (2)C4—C5—C6120.6 (2)
C1—C6—H6120.5C4—C5—H5119.7
C5—C6—H6120.5C6—C5—H5119.7
N2—C7—C2177.7 (3)
C6—C1—C2—C30.8 (3)C5—C4—C3—C21.2 (4)
N1—C1—C2—C3179.40 (19)C1—C2—C3—C41.6 (3)
C6—C1—C2—C7176.6 (2)C7—C2—C3—C4175.8 (2)
N1—C1—C2—C73.2 (3)C3—C4—C5—C60.0 (4)
C2—C1—C6—C50.4 (3)C1—C6—C5—C40.8 (4)
N1—C1—C6—C5179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.892.543.179 (3)130
N1—H1A···F4ii0.892.122.896 (2)146
N1—H1B···F4iii0.892.212.993 (2)147
N1—H1C···F30.891.952.799 (2)160
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H7N2+·BF4
Mr205.96
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.971 (2), 7.3565 (15), 11.022 (2)
β (°) 103.11 (3)
V3)866.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.96, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
8625, 1978, 1417
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.141, 1.08
No. of reflections1978
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.32

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.892.543.179 (3)130
N1—H1A···F4ii0.892.122.896 (2)146
N1—H1B···F4iii0.892.212.993 (2)147
N1—H1C···F30.891.952.799 (2)160
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Outstanding Doctoral Dissertation Fund of Southeast University.

References

First citationChen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010–4012.  Web of Science CrossRef Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191–1194.  CAS Google Scholar
First citationXie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712-3715.  Web of Science CSD CrossRef Google Scholar
First citationXiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051–1052.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds