organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3-Eth­­oxy-2-hy­droxy­benzyl­­idene)-4-hydr­­oxy-3-meth­oxy­benzohydrazide monohydrate

aSchool of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, People's Republic of China, and bSchool of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
*Correspondence e-mail: jiufulu@163.com

(Received 15 August 2009; accepted 20 August 2009; online 5 September 2009)

In the title compound, C17H18N2O5·H2O, the dihedral angle between the two aromatic rings is 7.86 (7)° and an intra­molecular O—H⋯N hydrogen bond is observed. In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Lu et al. (2008a[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008a). Acta Cryst. E64, o1693.],b[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008b). Acta Cryst. E64, o1694.],c[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008c). Acta Cryst. E64, o1695.]); Abdul Alhadi et al. (2009[Abdul Alhadi, A. A., Ali, H. M. & Ng, S. W. (2009). Acta Cryst. E65, o908.]); Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Narayana et al. (2007[Narayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O5·H2O

  • Mr = 348.35

  • Monoclinic, P 21 /n

  • a = 9.4063 (11) Å

  • b = 10.0598 (12) Å

  • c = 17.667 (2) Å

  • β = 93.702 (2)°

  • V = 1668.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.979

  • 9554 measured reflections

  • 3606 independent reflections

  • 2530 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.05

  • 3606 reflections

  • 239 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.94 2.6529 (16) 144
O5—H5⋯O6i 0.82 1.81 2.6177 (17) 170
O6—H6A⋯O3ii 0.84 (1) 1.96 (1) 2.7908 (17) 176 (2)
O6—H6B⋯O1iii 0.84 (1) 2.08 (1) 2.8714 (18) 157 (2)
N2—H2⋯O4iv 0.89 (1) 2.54 (2) 3.1181 (17) 123 (2)
N2—H2⋯O5iv 0.89 (1) 2.19 (1) 3.0496 (18) 163 (2)
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases and their metal complexes have received much attention in recent years. As part of our investigation on crystal structures of Schiff bases derived from the condensation of aldehydes with benzohydrazides (Lu et al., 2008a,b,c), we report herein the crystal structure of the title new Schiff base compound.

The asymmetric unit of the title compound (Fig. 1), consists of a Schiff base molecule and a water molecule of crystallization. The bond lengths have normal values (Allen et al., 1987), and are comparable to those observed in similar compounds (Abdul Alhadi et al., 2009; Mohd Lair et al., 2009; Narayana et al., 2007). The dihedral angle between the two aromatic rings is 7.86 (7)°, indicating that they are approximately coplanar. The methoxy and ethoxy groups are coplanar with the attached rings [C17—O4—C11—C10 = 4.6 (2)°, C15—O2—C3—C4 = -2.6 (2)° and C3—O2—C15—C16 = 177.98 (14)]. An intramolecular O—H···N hydrogen bond is observed (Table 1 and Fig. 1).

In the crystal structure, molecules are linked into a three-dimensional network (Fig. 2) by intermolecular O—H···O and N—H···O hydrogen bonds (Table 1).

Related literature top

For related structures, see: Lu et al. (2008a,b,c); Abdul Alhadi et al. (2009); Mohd Lair et al. (2009); Narayana et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the Schiff base condensation of 2-hydroxy-3-ethoxybenzaldehyde (0.1 mol) and 4-hydroxy-3-methoxybenzohydrazide (0.1 mmol) in 95% ethanol (50 ml). The excess ethanol was removed by distillation. The colourless solid obtained was filtered and washed with ethanol. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a 95% ethanol solution at room temperature.

Refinement top

The imino and water H atoms were located in a difference map and refined with N-H, O-H, and H···H distance restraints of 0.90 (1), 0.85 (1) and 1.37 (2) Å, respectively. Other H atoms were positioned geometrically (C-H = 0.93-0.97 Å, O-H = 0.82 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl and O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
N'-(3-Ethoxy-2-hydroxybenzylidene)-4-hydroxy-3-methoxybenzohydrazide monohydrate top
Crystal data top
C17H18N2O5·H2OF(000) = 736
Mr = 348.35Dx = 1.387 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2358 reflections
a = 9.4063 (11) Åθ = 2.3–24.5°
b = 10.0598 (12) ŵ = 0.11 mm1
c = 17.667 (2) ÅT = 298 K
β = 93.702 (2)°Block, colourless
V = 1668.3 (3) Å30.23 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3606 independent reflections
Radiation source: fine-focus sealed tube2530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 126
Tmin = 0.976, Tmax = 0.979k = 1212
9554 measured reflectionsl = 1922
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.153P]
where P = (Fo2 + 2Fc2)/3
3606 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.14 e Å3
4 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H18N2O5·H2OV = 1668.3 (3) Å3
Mr = 348.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4063 (11) ŵ = 0.11 mm1
b = 10.0598 (12) ÅT = 298 K
c = 17.667 (2) Å0.23 × 0.20 × 0.20 mm
β = 93.702 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3606 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2530 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.979Rint = 0.022
9554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.14 e Å3
3606 reflectionsΔρmin = 0.18 e Å3
239 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.10205 (14)0.58113 (13)0.92228 (7)0.0430 (3)
N20.02746 (14)0.49793 (13)0.87165 (7)0.0439 (3)
O10.33352 (11)0.69470 (12)0.98717 (7)0.0540 (3)
H10.28970.63770.96210.081*
O20.44363 (11)0.88030 (11)1.07376 (6)0.0500 (3)
O30.22665 (12)0.38467 (12)0.84788 (6)0.0540 (3)
O40.35636 (11)0.22118 (12)0.71623 (6)0.0519 (3)
O50.21352 (12)0.07248 (12)0.62606 (6)0.0495 (3)
H50.18320.08030.58380.074*
O60.87031 (16)0.12628 (18)0.49098 (7)0.0831 (5)
C10.09270 (16)0.76123 (14)1.00984 (8)0.0386 (4)
C20.23985 (16)0.77422 (14)1.02122 (8)0.0381 (3)
C30.29798 (17)0.87517 (15)1.06851 (8)0.0401 (4)
C40.20833 (19)0.95870 (16)1.10488 (9)0.0461 (4)
H40.24631.02601.13610.055*
C50.06202 (19)0.94300 (17)1.09513 (9)0.0491 (4)
H5A0.00240.99861.12070.059*
C60.00461 (18)0.84627 (16)1.04808 (9)0.0455 (4)
H60.09380.83711.04150.055*
C70.02778 (17)0.66469 (15)0.95732 (8)0.0432 (4)
H70.07080.66360.94890.052*
C80.09772 (16)0.40175 (15)0.83586 (8)0.0384 (4)
C90.01099 (15)0.31662 (14)0.78123 (8)0.0351 (3)
C100.13784 (16)0.31459 (14)0.77666 (8)0.0365 (3)
H100.18780.36860.80840.044*
C110.21102 (15)0.23219 (15)0.72488 (8)0.0366 (3)
C120.13654 (17)0.15245 (14)0.67632 (8)0.0377 (3)
C130.01011 (17)0.15321 (15)0.68193 (8)0.0420 (4)
H130.06020.09850.65060.050*
C140.08347 (16)0.23511 (15)0.73412 (8)0.0397 (4)
H140.18250.23510.73740.048*
C150.50926 (19)0.98456 (17)1.11853 (11)0.0572 (5)
H15A0.47960.98011.17010.069*
H15B0.48171.07051.09740.069*
C160.66733 (19)0.9667 (2)1.11801 (12)0.0642 (5)
H16A0.69310.88051.13790.096*
H16B0.71441.03401.14890.096*
H16C0.69580.97401.06700.096*
C170.44022 (17)0.30663 (19)0.75946 (10)0.0555 (5)
H17A0.41950.28980.81250.083*
H17B0.53940.29020.74660.083*
H17C0.41840.39750.74840.083*
H20.0640 (12)0.519 (2)0.8616 (11)0.080*
H6A0.8271 (18)0.119 (2)0.4483 (7)0.080*
H6B0.9512 (13)0.161 (2)0.4869 (11)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0430 (8)0.0417 (7)0.0424 (7)0.0028 (6)0.0102 (6)0.0046 (6)
N20.0378 (7)0.0425 (7)0.0495 (7)0.0006 (6)0.0130 (6)0.0076 (6)
O10.0423 (7)0.0555 (7)0.0638 (8)0.0032 (6)0.0008 (6)0.0259 (6)
O20.0426 (7)0.0509 (7)0.0560 (7)0.0028 (5)0.0007 (5)0.0188 (5)
O30.0348 (6)0.0661 (8)0.0591 (7)0.0020 (6)0.0115 (5)0.0130 (6)
O40.0321 (6)0.0615 (7)0.0616 (7)0.0057 (5)0.0012 (5)0.0146 (6)
O50.0477 (7)0.0577 (7)0.0426 (6)0.0144 (6)0.0003 (5)0.0110 (5)
O60.0632 (9)0.1350 (14)0.0491 (7)0.0436 (9)0.0107 (7)0.0188 (8)
C10.0404 (9)0.0381 (8)0.0367 (8)0.0013 (7)0.0030 (7)0.0019 (6)
C20.0421 (9)0.0359 (8)0.0360 (7)0.0038 (7)0.0012 (7)0.0027 (6)
C30.0393 (9)0.0415 (8)0.0391 (8)0.0004 (7)0.0014 (7)0.0028 (7)
C40.0549 (11)0.0411 (9)0.0420 (8)0.0016 (8)0.0001 (8)0.0104 (7)
C50.0500 (10)0.0490 (10)0.0488 (9)0.0113 (8)0.0060 (8)0.0058 (7)
C60.0416 (9)0.0481 (9)0.0465 (9)0.0043 (8)0.0008 (7)0.0004 (7)
C70.0396 (9)0.0448 (9)0.0442 (9)0.0001 (7)0.0061 (7)0.0000 (7)
C80.0367 (9)0.0412 (9)0.0362 (8)0.0015 (7)0.0055 (7)0.0024 (6)
C90.0349 (8)0.0366 (8)0.0328 (7)0.0019 (7)0.0047 (6)0.0039 (6)
C100.0364 (8)0.0378 (8)0.0350 (7)0.0002 (7)0.0006 (6)0.0010 (6)
C110.0302 (8)0.0400 (8)0.0391 (8)0.0041 (7)0.0017 (6)0.0048 (6)
C120.0408 (8)0.0382 (8)0.0334 (7)0.0085 (7)0.0024 (6)0.0001 (6)
C130.0399 (9)0.0457 (9)0.0407 (8)0.0014 (7)0.0057 (7)0.0030 (7)
C140.0314 (8)0.0449 (9)0.0422 (8)0.0019 (7)0.0009 (7)0.0017 (7)
C150.0513 (11)0.0513 (10)0.0682 (11)0.0078 (9)0.0016 (9)0.0219 (9)
C160.0497 (11)0.0614 (12)0.0804 (13)0.0063 (9)0.0032 (10)0.0139 (10)
C170.0362 (9)0.0684 (12)0.0622 (11)0.0030 (9)0.0043 (8)0.0016 (9)
Geometric parameters (Å, º) top
N1—C71.278 (2)C5—H5A0.93
N1—N21.3827 (17)C6—H60.93
N2—C81.352 (2)C7—H70.93
N2—H20.891 (9)C8—C91.493 (2)
O1—C21.3589 (18)C9—C141.380 (2)
O1—H10.82C9—C101.397 (2)
O2—C31.3681 (19)C10—C111.384 (2)
O2—C151.4296 (18)C10—H100.93
O3—C81.2297 (18)C11—C121.396 (2)
O4—C111.3703 (17)C12—C131.377 (2)
O4—C171.422 (2)C13—C141.387 (2)
O5—C121.3700 (17)C13—H130.93
O5—H50.82C14—H140.93
O6—H6A0.836 (9)C15—C161.498 (2)
O6—H6B0.844 (9)C15—H15A0.97
C1—C21.392 (2)C15—H15B0.97
C1—C61.395 (2)C16—H16A0.96
C1—C71.450 (2)C16—H16B0.96
C2—C31.403 (2)C16—H16C0.96
C3—C41.378 (2)C17—H17A0.96
C4—C51.385 (2)C17—H17B0.96
C4—H40.93C17—H17C0.96
C5—C61.368 (2)
C7—N1—N2116.17 (13)C10—C9—C8123.32 (13)
C8—N2—N1119.54 (13)C11—C10—C9120.03 (14)
C8—N2—H2124.6 (13)C11—C10—H10120.0
N1—N2—H2115.6 (13)C9—C10—H10120.0
C2—O1—H1109.5O4—C11—C10124.89 (14)
C3—O2—C15117.38 (12)O4—C11—C12114.95 (12)
C11—O4—C17118.38 (12)C10—C11—C12120.16 (13)
C12—O5—H5109.5O5—C12—C13122.36 (14)
H6A—O6—H6B110.4 (17)O5—C12—C11118.08 (13)
C2—C1—C6119.25 (14)C13—C12—C11119.53 (13)
C2—C1—C7121.93 (14)C12—C13—C14120.30 (14)
C6—C1—C7118.79 (14)C12—C13—H13119.8
O1—C2—C1123.22 (13)C14—C13—H13119.8
O1—C2—C3116.79 (14)C9—C14—C13120.67 (14)
C1—C2—C3119.97 (14)C9—C14—H14119.7
O2—C3—C4125.84 (14)C13—C14—H14119.7
O2—C3—C2114.69 (13)O2—C15—C16107.56 (14)
C4—C3—C2119.48 (15)O2—C15—H15A110.2
C3—C4—C5120.36 (15)C16—C15—H15A110.2
C3—C4—H4119.8O2—C15—H15B110.2
C5—C4—H4119.8C16—C15—H15B110.2
C6—C5—C4120.45 (15)H15A—C15—H15B108.5
C6—C5—H5A119.8C15—C16—H16A109.5
C4—C5—H5A119.8C15—C16—H16B109.5
C5—C6—C1120.45 (16)H16A—C16—H16B109.5
C5—C6—H6119.8C15—C16—H16C109.5
C1—C6—H6119.8H16A—C16—H16C109.5
N1—C7—C1121.97 (14)H16B—C16—H16C109.5
N1—C7—H7119.0O4—C17—H17A109.5
C1—C7—H7119.0O4—C17—H17B109.5
O3—C8—N2121.72 (14)H17A—C17—H17B109.5
O3—C8—C9121.55 (14)O4—C17—H17C109.5
N2—C8—C9116.73 (13)H17A—C17—H17C109.5
C14—C9—C10119.27 (13)H17B—C17—H17C109.5
C14—C9—C8117.40 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.942.6529 (16)144
O5—H5···O6i0.821.812.6177 (17)170
O6—H6A···O3ii0.84 (1)1.96 (1)2.7908 (17)176 (2)
O6—H6B···O1iii0.84 (1)2.08 (1)2.8714 (18)157 (2)
N2—H2···O4iv0.89 (1)2.54 (2)3.1181 (17)123 (2)
N2—H2···O5iv0.89 (1)2.19 (1)3.0496 (18)163 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+3/2, y1/2, z+3/2; (iv) x1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H18N2O5·H2O
Mr348.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.4063 (11), 10.0598 (12), 17.667 (2)
β (°) 93.702 (2)
V3)1668.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.976, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
9554, 3606, 2530
Rint0.022
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.05
No. of reflections3606
No. of parameters239
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.942.6529 (16)144
O5—H5···O6i0.821.812.6177 (17)170
O6—H6A···O3ii0.84 (1)1.96 (1)2.7908 (17)176 (2)
O6—H6B···O1iii0.84 (1)2.08 (1)2.8714 (18)157 (2)
N2—H2···O4iv0.89 (1)2.54 (2)3.1181 (17)123 (2)
N2—H2···O5iv0.89 (1)2.19 (1)3.0496 (18)163 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+3/2, y1/2, z+3/2; (iv) x1/2, y+1/2, z+3/2.
 

Acknowledgements

The author thanks the Scientific Research Foundation of Shaanxi University of Technology for financial support (project No. SLGQD0708).

References

First citationAbdul Alhadi, A. A., Ali, H. M. & Ng, S. W. (2009). Acta Cryst. E65, o908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008a). Acta Cryst. E64, o1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008b). Acta Cryst. E64, o1694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008c). Acta Cryst. E64, o1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds