organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Cyano­anilinium nitrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 18 August 2009; accepted 31 August 2009; online 9 September 2009)

In the cation of the title compound, C7H7N2+·NO3, the nitrile group and the benzene ring are almost coplanar (r.m.s. deviation = 0.006 Å). In the crystal, the ions are connected by bifurcated N—H⋯(O,O) hydrogen bonds, forming a two-dimensional network parallel to (001).

Related literature

For the applications of metal-organic coordination compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Chen et al. (2001[Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346-349.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]); Xiong et al. (1999[Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051-1052.]); Xie et al. (2003[Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712-3715.]); Zhao et al. (2004[Zhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem. 630, 1367-1370.]). For nitrile derivatives, see: Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Wang et al. 2002[Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191-1194.].

[Scheme 1]

Experimental

Crystal data
  • C7H7N2+·NO3

  • Mr = 181.16

  • Orthorhombic, P b c a

  • a = 10.210 (2) Å

  • b = 10.812 (2) Å

  • c = 15.398 (3) Å

  • V = 1699.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.40 × 0.25 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.94, Tmax = 1.00

  • 15905 measured reflections

  • 1871 independent reflections

  • 1456 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.141

  • S = 1.14

  • 1871 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.89 2.22 3.104 (2) 173
N2—H2A⋯O1i 0.89 2.44 3.107 (2) 133
N2—H2B⋯O2ii 0.89 2.06 2.859 (2) 150
N2—H2B⋯O3ii 0.89 2.25 3.049 (2) 149
N2—H2C⋯O2 0.89 1.85 2.738 (2) 172
N2—H2C⋯O1 0.89 2.56 3.090 (2) 119
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Fu et al., 2007; Chen et al., 2001; Fu & Xiong, 2008; Xie et al., 2003; Zhao et al., 2004; Xiong et al., 1999). Nitrile derivatives are a class of excellent ligands for the construction of novel metal-organic frameworks (Wang et al. 2002; Fu et al., 2008). We report here the crystal structure of the title compound, 3-cyanoanilinium nitrate.

In the 3-cyanoanilinium cation (Fig.1), the nitrile group and the benzene ring are coplanar. The nitrile group C1N1 bond length of 1.102 (3) Å is within the normal range.

In the crystal structure, all the amine group H atoms are involved in N—H···O hydrogen bonds (Table 1) with O atoms of the NO3- anion. These hydrogen bonds link the ionic units into a two-dimensional network (Fig. 2) parallel to the (001) plane.

Related literature top

For the applications of metal-organic coordination compounds, see: Fu et al. (2007); Chen et al. (2001); Fu & Xiong (2008); Xiong et al. (1999); Xie et al. (2003); Zhao et al. (2004). For nitrile derivatives, see: Fu et al. (2008); Wang et al. 2002.

Experimental top

The commercial 3-aminobenzonitrile (3 mmol, 0.55 g) and HNO3 (0.5 ml) were dissolved in ethanol (20 ml). Colourless block-shaped crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation at room temperature.

Refinement top

H atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å, N-H = 0.89 Å and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N). A rotating-group model was used for the -NH3 group.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis, showing N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
3-Cyanoanilinium nitrate top
Crystal data top
C7H7N2+·NO3F(000) = 752
Mr = 181.16Dx = 1.416 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1456 reflections
a = 10.210 (2) Åθ = 3.1–27.5°
b = 10.812 (2) ŵ = 0.11 mm1
c = 15.398 (3) ÅT = 298 K
V = 1699.8 (6) Å3Block, colourless
Z = 80.40 × 0.25 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
1871 independent reflections
Radiation source: fine-focus sealed tube1456 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD profile fitting scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.94, Tmax = 1.00l = 1919
15905 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.059P)2 + 0.3685P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
1871 reflectionsΔρmax = 0.21 e Å3
120 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (3)
Crystal data top
C7H7N2+·NO3V = 1699.8 (6) Å3
Mr = 181.16Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.210 (2) ŵ = 0.11 mm1
b = 10.812 (2) ÅT = 298 K
c = 15.398 (3) Å0.40 × 0.25 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
1871 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1456 reflections with I > 2σ(I)
Tmin = 0.94, Tmax = 1.00Rint = 0.062
15905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.14Δρmax = 0.21 e Å3
1871 reflectionsΔρmin = 0.19 e Å3
120 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.06292 (19)0.5067 (2)0.39061 (13)0.0724 (6)
N20.39497 (14)0.44355 (16)0.69503 (9)0.0435 (4)
H2A0.41100.52390.70160.065*
H2B0.46200.40010.71580.065*
H2C0.32240.42360.72380.065*
C10.1482 (2)0.4737 (2)0.42791 (13)0.0526 (5)
C20.25733 (17)0.43017 (19)0.47337 (11)0.0443 (5)
C30.27221 (17)0.45958 (18)0.56150 (11)0.0420 (5)
H30.21080.50800.59040.050*
C40.37764 (16)0.41559 (17)0.60241 (11)0.0382 (4)
C50.46585 (19)0.34385 (19)0.55934 (12)0.0488 (5)
H50.53820.31310.58900.059*
C60.4502 (2)0.3155 (2)0.47200 (13)0.0568 (6)
H60.51190.26690.44360.068*
C70.3461 (2)0.3585 (2)0.42905 (12)0.0538 (5)
H70.33390.34030.37060.065*
O10.23542 (15)0.20195 (16)0.71257 (11)0.0701 (5)
O20.16047 (13)0.37804 (14)0.76798 (10)0.0594 (5)
O30.04000 (13)0.21817 (14)0.73494 (10)0.0592 (5)
N30.14567 (15)0.26571 (16)0.73782 (10)0.0449 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0625 (12)0.1071 (17)0.0476 (11)0.0072 (12)0.0138 (9)0.0010 (11)
N20.0413 (8)0.0563 (10)0.0328 (8)0.0053 (7)0.0013 (6)0.0047 (7)
C10.0517 (11)0.0722 (14)0.0339 (10)0.0038 (10)0.0043 (9)0.0017 (9)
C20.0432 (10)0.0547 (12)0.0351 (9)0.0056 (8)0.0034 (7)0.0006 (8)
C30.0382 (9)0.0536 (11)0.0341 (9)0.0008 (8)0.0015 (7)0.0030 (8)
C40.0401 (9)0.0440 (10)0.0306 (9)0.0018 (8)0.0004 (7)0.0021 (7)
C50.0473 (10)0.0588 (12)0.0403 (10)0.0103 (9)0.0008 (8)0.0038 (9)
C60.0572 (13)0.0703 (14)0.0429 (11)0.0126 (11)0.0061 (9)0.0134 (10)
C70.0612 (12)0.0685 (14)0.0318 (9)0.0020 (11)0.0013 (9)0.0094 (9)
O10.0487 (9)0.0727 (11)0.0889 (12)0.0073 (8)0.0163 (8)0.0161 (9)
O20.0548 (9)0.0635 (10)0.0598 (9)0.0069 (7)0.0087 (7)0.0173 (8)
O30.0395 (8)0.0752 (10)0.0628 (10)0.0077 (7)0.0046 (6)0.0065 (7)
N30.0440 (9)0.0596 (11)0.0310 (8)0.0007 (8)0.0012 (6)0.0000 (7)
Geometric parameters (Å, º) top
N1—C11.102 (3)C4—C51.361 (3)
N2—C41.469 (2)C5—C61.389 (3)
N2—H2A0.89C5—H50.93
N2—H2B0.89C6—C71.335 (3)
N2—H2C0.89C6—H60.93
C1—C21.397 (3)C7—H70.93
C2—C71.374 (3)O1—N31.211 (2)
C2—C31.402 (3)O2—N31.309 (2)
C3—C41.335 (2)O3—N31.196 (2)
C3—H30.93
C4—N2—H2A109.5C3—C4—N2118.82 (15)
C4—N2—H2B109.5C5—C4—N2120.72 (16)
H2A—N2—H2B109.5C4—C5—C6121.42 (18)
C4—N2—H2C109.5C4—C5—H5119.3
H2A—N2—H2C109.5C6—C5—H5119.3
H2B—N2—H2C109.5C7—C6—C5119.66 (19)
N1—C1—C2178.6 (2)C7—C6—H6120.2
C7—C2—C1117.84 (17)C5—C6—H6120.2
C7—C2—C3122.50 (17)C6—C7—C2118.37 (17)
C1—C2—C3119.66 (17)C6—C7—H7120.8
C4—C3—C2117.60 (17)C2—C7—H7120.8
C4—C3—H3121.2O3—N3—O1115.22 (17)
C2—C3—H3121.2O3—N3—O2121.07 (16)
C3—C4—C5120.45 (17)O1—N3—O2123.69 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.892.223.104 (2)173
N2—H2A···O1i0.892.443.107 (2)133
N2—H2B···O2ii0.892.062.859 (2)150
N2—H2B···O3ii0.892.253.049 (2)149
N2—H2C···O20.891.852.738 (2)172
N2—H2C···O10.892.563.090 (2)119
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H7N2+·NO3
Mr181.16
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)10.210 (2), 10.812 (2), 15.398 (3)
V3)1699.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.25 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.94, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
15905, 1871, 1456
Rint0.062
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.141, 1.14
No. of reflections1871
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.892.223.104 (2)173
N2—H2A···O1i0.892.443.107 (2)133
N2—H2B···O2ii0.892.062.859 (2)150
N2—H2B···O3ii0.892.253.049 (2)149
N2—H2C···O20.891.852.738 (2)172
N2—H2C···O10.892.563.090 (2)119
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y, z+3/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationChen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191–1194.  CAS Google Scholar
First citationXie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712–3715.  Web of Science CSD CrossRef Google Scholar
First citationXiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051–1052.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem. 630, 1367–1370.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds