organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-3-methyl­anilinium perchlorate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 26 August 2009; accepted 1 September 2009; online 9 September 2009)

In the title compound, C7H9BrN+·ClO4, the cations and anions are linked by inter­molecular N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the ab plane.

Related literature

For the use of amine derivatives in the construction of metal-organic frameworks, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P.-D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]); Wang et al. (2002[Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191-1194.]). For applications of metal-organic coordination compounds, see: Chen et al. (2001[Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346-349.]); Xiong et al. (1999[Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051-1052.]); Xie et al. (2003[Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712-3715.]); Zhao et al. (2004[Zhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem. 630, 1367-1370.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9BrN+·ClO4

  • Mr = 286.51

  • Triclinic, [P \overline 1]

  • a = 4.9455 (10) Å

  • b = 6.9647 (14) Å

  • c = 15.714 (3) Å

  • α = 95.78 (3)°

  • β = 94.40 (3)°

  • γ = 102.62 (3)°

  • V = 522.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.18 mm−1

  • T = 298 K

  • 0.40 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 5411 measured reflections

  • 2382 independent reflections

  • 1584 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.127

  • S = 1.03

  • 2382 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.89 2.04 2.909 (4) 166
N1—H1B⋯O1ii 0.89 2.03 2.875 (4) 159
N1—H1C⋯O3 0.89 2.02 2.857 (4) 156
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Chen et al., 2001; Xie et al., 2003; Zhao et al., 2004; Xiong et al., 1999). Amine derivatives are a class of excellent ligands for the construction of novel metal-organic frameworks (Fu et al., 2007, 2008; Wang et al. 2002; Fu & Xiong 2008). We report here the crystal structure of the title compound, 4-bromo-3-methylanilinium perchlorate.

In the title compound (Fig.1), the amino N atom is protonated. In the crystal structure, all the amine group H atoms are involved in N—H···O hydrogen bonding (Table 1) with O atoms of ClO4- anion. These hydrogen bonds link the ionic units into a two-dimensional network parallel to the ab plane (Fig. 2).

Related literature top

For applications of metal-organic coordination compounds, see: Chen et al. (2001); Xiong et al. (1999); Xie et al. (2003); Zhao et al. (2004). For amine derivatives, see: Fu et al. (2007, 2008); Fu & Xiong (2008); Wang et al. (2002).

Experimental top

The commercial 4-bromo-3-methylbenzenamine (3 mmol, 0.75 g) and HClO4 (0.5 ml) were dissolved in ethanol (20 ml). Colourless block-shaped crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation at room temperature.

Refinement top

H atoms were positioned geometrically and treated as riding [C-H = 0.93 Å (aromatic), 0.96 Å (methyl) and N-H = 0.89 Å (N)], with Uiso(H) = 1.2Ueq (aromatic C) and 1.5Ueq(methyl C or N). A rotating-group model was used for the methyl and -NH3 groups.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis, showing the N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
4-Bromo-3-methylanilinium perchlorate top
Crystal data top
C7H9BrN+·ClO4Z = 2
Mr = 286.51F(000) = 284
Triclinic, P1Dx = 1.820 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.9455 (10) ÅCell parameters from 1584 reflections
b = 6.9647 (14) Åθ = 3.0–27.5°
c = 15.714 (3) ŵ = 4.18 mm1
α = 95.78 (3)°T = 298 K
β = 94.40 (3)°Needle, colourless
γ = 102.62 (3)°0.40 × 0.05 × 0.05 mm
V = 522.8 (2) Å3
Data collection top
Rigaku Mercury2
diffractometer
2382 independent reflections
Radiation source: fine-focus sealed tube1584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD profile fitting scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.910, Tmax = 1.000l = 2020
5411 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.0338P]
where P = (Fo2 + 2Fc2)/3
2382 reflections(Δ/σ)max = 0.001
129 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C7H9BrN+·ClO4γ = 102.62 (3)°
Mr = 286.51V = 522.8 (2) Å3
Triclinic, P1Z = 2
a = 4.9455 (10) ÅMo Kα radiation
b = 6.9647 (14) ŵ = 4.18 mm1
c = 15.714 (3) ÅT = 298 K
α = 95.78 (3)°0.40 × 0.05 × 0.05 mm
β = 94.40 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2382 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1584 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.053
5411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
2382 reflectionsΔρmin = 0.57 e Å3
129 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.71423 (12)0.24442 (9)0.97211 (3)0.0819 (3)
N11.0957 (6)0.2471 (5)0.6136 (2)0.0392 (7)
H1A1.17840.14710.60280.059*
H1B1.21420.36090.60900.059*
H1C0.94650.23170.57590.059*
C10.8397 (8)0.2542 (6)0.8609 (3)0.0470 (10)
C20.9780 (10)0.1151 (6)0.8326 (3)0.0548 (12)
H21.01270.02260.86820.066*
C31.0671 (9)0.1102 (6)0.7516 (3)0.0461 (10)
H31.16230.01600.73190.055*
C41.0104 (8)0.2496 (5)0.7008 (2)0.0351 (8)
C50.8762 (7)0.3934 (5)0.7301 (2)0.0357 (8)
H50.84560.48760.69480.043*
C60.7862 (8)0.3996 (6)0.8114 (3)0.0412 (9)
C70.6377 (9)0.5534 (7)0.8433 (3)0.0582 (12)
H7A0.64170.64850.80290.087*
H7B0.72800.61910.89800.087*
H7C0.44790.49130.84930.087*
Cl10.49638 (17)0.22738 (12)0.42344 (6)0.0330 (2)
O10.5691 (7)0.3547 (4)0.3590 (2)0.0653 (9)
O20.5586 (6)0.0410 (4)0.3998 (2)0.0556 (8)
O30.6498 (6)0.3195 (4)0.50396 (19)0.0547 (8)
O40.2066 (5)0.1974 (4)0.4320 (2)0.0575 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0920 (5)0.1064 (5)0.0435 (4)0.0025 (4)0.0248 (3)0.0218 (3)
N10.0411 (17)0.0467 (18)0.0321 (18)0.0158 (15)0.0029 (14)0.0044 (15)
C10.046 (2)0.055 (2)0.034 (2)0.002 (2)0.0072 (18)0.006 (2)
C20.068 (3)0.051 (2)0.044 (3)0.006 (2)0.003 (2)0.023 (2)
C30.056 (3)0.044 (2)0.041 (3)0.018 (2)0.004 (2)0.0060 (19)
C40.0342 (18)0.0356 (19)0.032 (2)0.0021 (16)0.0007 (16)0.0044 (16)
C50.0339 (19)0.039 (2)0.036 (2)0.0094 (16)0.0042 (16)0.0087 (17)
C60.038 (2)0.045 (2)0.036 (2)0.0029 (18)0.0026 (18)0.0000 (18)
C70.059 (3)0.071 (3)0.048 (3)0.022 (2)0.011 (2)0.002 (2)
Cl10.0322 (4)0.0332 (4)0.0357 (5)0.0104 (4)0.0041 (4)0.0074 (4)
O10.087 (2)0.0574 (18)0.055 (2)0.0112 (18)0.0140 (18)0.0289 (16)
O20.0624 (19)0.0415 (15)0.068 (2)0.0236 (15)0.0084 (16)0.0015 (14)
O30.0547 (18)0.0522 (17)0.0515 (19)0.0132 (14)0.0179 (14)0.0049 (14)
O40.0305 (14)0.072 (2)0.068 (2)0.0109 (14)0.0101 (14)0.0056 (17)
Geometric parameters (Å, º) top
Br1—C11.902 (4)C4—C51.379 (5)
N1—C41.464 (5)C5—C61.384 (5)
N1—H1A0.89C5—H50.93
N1—H1B0.89C6—C71.493 (6)
N1—H1C0.89C7—H7A0.96
C1—C21.362 (6)C7—H7B0.96
C1—C61.394 (6)C7—H7C0.96
C2—C31.377 (6)Cl1—O21.419 (3)
C2—H20.93Cl1—O41.421 (3)
C3—C41.378 (5)Cl1—O11.428 (3)
C3—H30.93Cl1—O31.437 (3)
C4—N1—H1A109.5C4—C5—C6120.9 (4)
C4—N1—H1B109.5C4—C5—H5119.5
H1A—N1—H1B109.5C6—C5—H5119.5
C4—N1—H1C109.5C5—C6—C1116.4 (4)
H1A—N1—H1C109.5C5—C6—C7121.3 (4)
H1B—N1—H1C109.5C1—C6—C7122.3 (4)
C2—C1—C6122.6 (4)C6—C7—H7A109.5
C2—C1—Br1117.7 (3)C6—C7—H7B109.5
C6—C1—Br1119.7 (3)H7A—C7—H7B109.5
C1—C2—C3120.6 (4)C6—C7—H7C109.5
C1—C2—H2119.7H7A—C7—H7C109.5
C3—C2—H2119.7H7B—C7—H7C109.5
C2—C3—C4117.8 (4)O2—Cl1—O4108.72 (18)
C2—C3—H3121.1O2—Cl1—O1109.8 (2)
C4—C3—H3121.1O4—Cl1—O1109.9 (2)
C3—C4—C5121.6 (4)O2—Cl1—O3110.55 (17)
C3—C4—N1119.6 (3)O4—Cl1—O3109.01 (19)
C5—C4—N1118.7 (3)O1—Cl1—O3108.79 (18)
C6—C1—C2—C31.4 (7)C4—C5—C6—C10.2 (5)
Br1—C1—C2—C3178.0 (3)C4—C5—C6—C7179.3 (4)
C1—C2—C3—C40.2 (6)C2—C1—C6—C51.4 (6)
C2—C3—C4—C51.8 (6)Br1—C1—C6—C5178.0 (3)
C2—C3—C4—N1178.6 (3)C2—C1—C6—C7179.2 (4)
C3—C4—C5—C61.8 (6)Br1—C1—C6—C71.4 (5)
N1—C4—C5—C6178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.042.909 (4)166
N1—H1B···O1ii0.892.032.875 (4)159
N1—H1C···O30.892.022.857 (4)156
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H9BrN+·ClO4
Mr286.51
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.9455 (10), 6.9647 (14), 15.714 (3)
α, β, γ (°)95.78 (3), 94.40 (3), 102.62 (3)
V3)522.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)4.18
Crystal size (mm)0.40 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5411, 2382, 1584
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.127, 1.03
No. of reflections2382
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.57

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.042.909 (4)166
N1—H1B···O1ii0.892.032.875 (4)159
N1—H1C···O30.892.022.857 (4)156
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationChen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P.-D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191–1194.  CAS Google Scholar
First citationXie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712–3715.  Web of Science CSD CrossRef Google Scholar
First citationXiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051–1052.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem. 630, 1367–1370.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds