organic compounds
4-Bromo-3-methylanilinium perchlorate
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn
In the title compound, C7H9BrN+·ClO4−, the cations and anions are linked by intermolecular N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the ab plane.
Related literature
For the use of amine derivatives in the construction of metal-organic frameworks, see: Fu et al. (2007, 2008); Fu & Xiong (2008); Wang et al. (2002). For applications of metal-organic coordination compounds, see: Chen et al. (2001); Xiong et al. (1999); Xie et al. (2003); Zhao et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053680903520X/ci2895sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680903520X/ci2895Isup2.hkl
The commercial 4-bromo-3-methylbenzenamine (3 mmol, 0.75 g) and HClO4 (0.5 ml) were dissolved in ethanol (20 ml). Colourless block-shaped crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation at room temperature.
H atoms were positioned geometrically and treated as riding [C-H = 0.93 Å (aromatic), 0.96 Å (methyl) and N-H = 0.89 Å (N)], with Uiso(H) = 1.2Ueq (aromatic C) and 1.5Ueq(methyl C or N). A rotating-group model was used for the methyl and -NH3 groups.
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C7H9BrN+·ClO4− | Z = 2 |
Mr = 286.51 | F(000) = 284 |
Triclinic, P1 | Dx = 1.820 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.9455 (10) Å | Cell parameters from 1584 reflections |
b = 6.9647 (14) Å | θ = 3.0–27.5° |
c = 15.714 (3) Å | µ = 4.18 mm−1 |
α = 95.78 (3)° | T = 298 K |
β = 94.40 (3)° | Needle, colourless |
γ = 102.62 (3)° | 0.40 × 0.05 × 0.05 mm |
V = 522.8 (2) Å3 |
Rigaku Mercury2 diffractometer | 2382 independent reflections |
Radiation source: fine-focus sealed tube | 1584 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
CCD profile fitting scans | h = −6→6 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −9→9 |
Tmin = 0.910, Tmax = 1.000 | l = −20→20 |
5411 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0535P)2 + 0.0338P] where P = (Fo2 + 2Fc2)/3 |
2382 reflections | (Δ/σ)max = 0.001 |
129 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.57 e Å−3 |
C7H9BrN+·ClO4− | γ = 102.62 (3)° |
Mr = 286.51 | V = 522.8 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.9455 (10) Å | Mo Kα radiation |
b = 6.9647 (14) Å | µ = 4.18 mm−1 |
c = 15.714 (3) Å | T = 298 K |
α = 95.78 (3)° | 0.40 × 0.05 × 0.05 mm |
β = 94.40 (3)° |
Rigaku Mercury2 diffractometer | 2382 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1584 reflections with I > 2σ(I) |
Tmin = 0.910, Tmax = 1.000 | Rint = 0.053 |
5411 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.44 e Å−3 |
2382 reflections | Δρmin = −0.57 e Å−3 |
129 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.71423 (12) | 0.24442 (9) | 0.97211 (3) | 0.0819 (3) | |
N1 | 1.0957 (6) | 0.2471 (5) | 0.6136 (2) | 0.0392 (7) | |
H1A | 1.1784 | 0.1471 | 0.6028 | 0.059* | |
H1B | 1.2142 | 0.3609 | 0.6090 | 0.059* | |
H1C | 0.9465 | 0.2317 | 0.5759 | 0.059* | |
C1 | 0.8397 (8) | 0.2542 (6) | 0.8609 (3) | 0.0470 (10) | |
C2 | 0.9780 (10) | 0.1151 (6) | 0.8326 (3) | 0.0548 (12) | |
H2 | 1.0127 | 0.0226 | 0.8682 | 0.066* | |
C3 | 1.0671 (9) | 0.1102 (6) | 0.7516 (3) | 0.0461 (10) | |
H3 | 1.1623 | 0.0160 | 0.7319 | 0.055* | |
C4 | 1.0104 (8) | 0.2496 (5) | 0.7008 (2) | 0.0351 (8) | |
C5 | 0.8762 (7) | 0.3934 (5) | 0.7301 (2) | 0.0357 (8) | |
H5 | 0.8456 | 0.4876 | 0.6948 | 0.043* | |
C6 | 0.7862 (8) | 0.3996 (6) | 0.8114 (3) | 0.0412 (9) | |
C7 | 0.6377 (9) | 0.5534 (7) | 0.8433 (3) | 0.0582 (12) | |
H7A | 0.6417 | 0.6485 | 0.8029 | 0.087* | |
H7B | 0.7280 | 0.6191 | 0.8980 | 0.087* | |
H7C | 0.4479 | 0.4913 | 0.8493 | 0.087* | |
Cl1 | 0.49638 (17) | 0.22738 (12) | 0.42344 (6) | 0.0330 (2) | |
O1 | 0.5691 (7) | 0.3547 (4) | 0.3590 (2) | 0.0653 (9) | |
O2 | 0.5586 (6) | 0.0410 (4) | 0.3998 (2) | 0.0556 (8) | |
O3 | 0.6498 (6) | 0.3195 (4) | 0.50396 (19) | 0.0547 (8) | |
O4 | 0.2066 (5) | 0.1974 (4) | 0.4320 (2) | 0.0575 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0920 (5) | 0.1064 (5) | 0.0435 (4) | 0.0025 (4) | 0.0248 (3) | 0.0218 (3) |
N1 | 0.0411 (17) | 0.0467 (18) | 0.0321 (18) | 0.0158 (15) | 0.0029 (14) | 0.0044 (15) |
C1 | 0.046 (2) | 0.055 (2) | 0.034 (2) | −0.002 (2) | 0.0072 (18) | 0.006 (2) |
C2 | 0.068 (3) | 0.051 (2) | 0.044 (3) | 0.006 (2) | 0.003 (2) | 0.023 (2) |
C3 | 0.056 (3) | 0.044 (2) | 0.041 (3) | 0.018 (2) | 0.004 (2) | 0.0060 (19) |
C4 | 0.0342 (18) | 0.0356 (19) | 0.032 (2) | 0.0021 (16) | −0.0007 (16) | 0.0044 (16) |
C5 | 0.0339 (19) | 0.039 (2) | 0.036 (2) | 0.0094 (16) | 0.0042 (16) | 0.0087 (17) |
C6 | 0.038 (2) | 0.045 (2) | 0.036 (2) | 0.0029 (18) | 0.0026 (18) | 0.0000 (18) |
C7 | 0.059 (3) | 0.071 (3) | 0.048 (3) | 0.022 (2) | 0.011 (2) | −0.002 (2) |
Cl1 | 0.0322 (4) | 0.0332 (4) | 0.0357 (5) | 0.0104 (4) | 0.0041 (4) | 0.0074 (4) |
O1 | 0.087 (2) | 0.0574 (18) | 0.055 (2) | 0.0112 (18) | 0.0140 (18) | 0.0289 (16) |
O2 | 0.0624 (19) | 0.0415 (15) | 0.068 (2) | 0.0236 (15) | 0.0084 (16) | 0.0015 (14) |
O3 | 0.0547 (18) | 0.0522 (17) | 0.0515 (19) | 0.0132 (14) | −0.0179 (14) | −0.0049 (14) |
O4 | 0.0305 (14) | 0.072 (2) | 0.068 (2) | 0.0109 (14) | 0.0101 (14) | −0.0056 (17) |
Br1—C1 | 1.902 (4) | C4—C5 | 1.379 (5) |
N1—C4 | 1.464 (5) | C5—C6 | 1.384 (5) |
N1—H1A | 0.89 | C5—H5 | 0.93 |
N1—H1B | 0.89 | C6—C7 | 1.493 (6) |
N1—H1C | 0.89 | C7—H7A | 0.96 |
C1—C2 | 1.362 (6) | C7—H7B | 0.96 |
C1—C6 | 1.394 (6) | C7—H7C | 0.96 |
C2—C3 | 1.377 (6) | Cl1—O2 | 1.419 (3) |
C2—H2 | 0.93 | Cl1—O4 | 1.421 (3) |
C3—C4 | 1.378 (5) | Cl1—O1 | 1.428 (3) |
C3—H3 | 0.93 | Cl1—O3 | 1.437 (3) |
C4—N1—H1A | 109.5 | C4—C5—C6 | 120.9 (4) |
C4—N1—H1B | 109.5 | C4—C5—H5 | 119.5 |
H1A—N1—H1B | 109.5 | C6—C5—H5 | 119.5 |
C4—N1—H1C | 109.5 | C5—C6—C1 | 116.4 (4) |
H1A—N1—H1C | 109.5 | C5—C6—C7 | 121.3 (4) |
H1B—N1—H1C | 109.5 | C1—C6—C7 | 122.3 (4) |
C2—C1—C6 | 122.6 (4) | C6—C7—H7A | 109.5 |
C2—C1—Br1 | 117.7 (3) | C6—C7—H7B | 109.5 |
C6—C1—Br1 | 119.7 (3) | H7A—C7—H7B | 109.5 |
C1—C2—C3 | 120.6 (4) | C6—C7—H7C | 109.5 |
C1—C2—H2 | 119.7 | H7A—C7—H7C | 109.5 |
C3—C2—H2 | 119.7 | H7B—C7—H7C | 109.5 |
C2—C3—C4 | 117.8 (4) | O2—Cl1—O4 | 108.72 (18) |
C2—C3—H3 | 121.1 | O2—Cl1—O1 | 109.8 (2) |
C4—C3—H3 | 121.1 | O4—Cl1—O1 | 109.9 (2) |
C3—C4—C5 | 121.6 (4) | O2—Cl1—O3 | 110.55 (17) |
C3—C4—N1 | 119.6 (3) | O4—Cl1—O3 | 109.01 (19) |
C5—C4—N1 | 118.7 (3) | O1—Cl1—O3 | 108.79 (18) |
C6—C1—C2—C3 | −1.4 (7) | C4—C5—C6—C1 | 0.2 (5) |
Br1—C1—C2—C3 | 178.0 (3) | C4—C5—C6—C7 | −179.3 (4) |
C1—C2—C3—C4 | −0.2 (6) | C2—C1—C6—C5 | 1.4 (6) |
C2—C3—C4—C5 | 1.8 (6) | Br1—C1—C6—C5 | −178.0 (3) |
C2—C3—C4—N1 | −178.6 (3) | C2—C1—C6—C7 | −179.2 (4) |
C3—C4—C5—C6 | −1.8 (6) | Br1—C1—C6—C7 | 1.4 (5) |
N1—C4—C5—C6 | 178.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.89 | 2.04 | 2.909 (4) | 166 |
N1—H1B···O1ii | 0.89 | 2.03 | 2.875 (4) | 159 |
N1—H1C···O3 | 0.89 | 2.02 | 2.857 (4) | 156 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C7H9BrN+·ClO4− |
Mr | 286.51 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 4.9455 (10), 6.9647 (14), 15.714 (3) |
α, β, γ (°) | 95.78 (3), 94.40 (3), 102.62 (3) |
V (Å3) | 522.8 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 4.18 |
Crystal size (mm) | 0.40 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.910, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5411, 2382, 1584 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.127, 1.03 |
No. of reflections | 2382 |
No. of parameters | 129 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.57 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.89 | 2.04 | 2.909 (4) | 166 |
N1—H1B···O1ii | 0.89 | 2.03 | 2.875 (4) | 159 |
N1—H1C···O3 | 0.89 | 2.02 | 2.857 (4) | 156 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+2, −y+1, −z+1. |
Acknowledgements
This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.
References
Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349. Web of Science CSD CrossRef CAS Google Scholar
Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P.-D. (2007). J. Am. Chem. Soc. 129, 5346–5347. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948. Web of Science CSD CrossRef Google Scholar
Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191–1194. CAS Google Scholar
Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712–3715. Web of Science CSD CrossRef Google Scholar
Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051–1052. Web of Science CSD CrossRef CAS Google Scholar
Zhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem. 630, 1367–1370. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Chen et al., 2001; Xie et al., 2003; Zhao et al., 2004; Xiong et al., 1999). Amine derivatives are a class of excellent ligands for the construction of novel metal-organic frameworks (Fu et al., 2007, 2008; Wang et al. 2002; Fu & Xiong 2008). We report here the crystal structure of the title compound, 4-bromo-3-methylanilinium perchlorate.
In the title compound (Fig.1), the amino N atom is protonated. In the crystal structure, all the amine group H atoms are involved in N—H···O hydrogen bonding (Table 1) with O atoms of ClO4- anion. These hydrogen bonds link the ionic units into a two-dimensional network parallel to the ab plane (Fig. 2).