organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A chiral photochromic Schiff base: (R)-4-meth­­oxy-2-[(1-phenyl­ethyl)imino­meth­yl]phenol

aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: akitsu@rs.kagu.tus.ac.jp

(Received 28 August 2009; accepted 3 September 2009; online 9 September 2009)

The title chiral photochromic Schiff base compound, C16H17NO2, was synthesized from (R)-1-phenyl­ethyl­amine and 5-methoxy­salicylaldehyde. The mol­ecule of the title compound exists in the phenol–imine tautomeric form. The dihedral angle between the two aromatic rings is 62.61 (11)°. An intra­molecular O—H⋯N hydrogen bond with an O⋯N distance of 2.589 (2) Å is observed. The crystal packing is stabilized by C—H⋯π inter­actions involving the aromatic ring.

Related literature

For chiral metal complexes and their hybrid materials, see: Akitsu (2007[Akitsu, T. (2007). Polyhedron, 26, 2527-2535.]); Akitsu & Einaga (2004[Akitsu, T. & Einaga, Y. (2004). Acta Cryst. C60, m640-m642.], 2005a[Akitsu, T. & Einaga, Y. (2005a). Polyhedron, 24, 1869-1877.],b[Akitsu, T. & Einaga, Y. (2005b). Polyhedron, 24, 2933-2943.], 2006a[Akitsu, T. & Einaga, Y. (2006a). Polyhedron, 25, 1089-1095.]); Akitsu et al. (2009[Akitsu, T., Yamaguchi, J., Uchida, N. & Aritake, Y. (2009). Res. Lett. Mater. Sci. 484172 (4 pages).]); Yamada (1999[Yamada, S. (1999). Coord. Chem. Rev. 190-192, 537-555.]). For structral comparison of the 1-phenylethylamine moiety, see: Antonov et al. (1995[Antonov, D. Y., Belokon, Y. N., Ikonnikov, N. S., Orlova, S. A., Pisarevsky, A. P., Raevski, N. I., Rozenberg, V. I., Sergeeva, E. V., Struchkov, Y. T., Tararov, V. I. & Vorontsov, E. V. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1873-1879.]); Liu et al. (1997[Liu, Q., Ding, M., Lin, Y. & Xing, Y. (1997). J. Organomet. Chem. 548, 139-142.]). For related Schiff base ligands and their functions, see: Akitsu et al. (2004[Akitsu, T., Takeuchi, Y. & Einaga, Y. (2004). Acta Cryst. C60, o801-o802.]); Akitsu & Einaga (2006b[Akitsu, T. & Einaga, Y. (2006b). Acta Cryst. E62, o4315-o4317.]); Hadjoudis et al. (1987[Hadjoudis, E., Vitterakis, M. & Mavridis, I. M. (1987). Tetrahedron, 43, 1345-1360.], 2004[Hadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. A, 162, 521-530.]); Santoni & Rehder (2004[Santoni, G. & Rehder, D. (2004). J. Inorg. Biochem. 98, 758-764.]); Sliwa et al. (2005[Sliwa, M., Letrard, S., Malfant, I., Nierlich, M., Lacroix, P. G., Asahi, T., Masuhara, H., Yu, P. & Nakatani, K. (2005). Chem. Mater. 17, 4727-4735.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO2

  • Mr = 255.31

  • Monoclinic, P 21

  • a = 8.270 (4) Å

  • b = 5.886 (3) Å

  • c = 13.920 (7) Å

  • β = 93.254 (7)°

  • V = 676.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.21 × 0.19 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.983, Tmax = 0.994

  • 3805 measured reflections

  • 1677 independent reflections

  • 1454 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.088

  • S = 0.99

  • 1677 reflections

  • 240 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.97 (3) 1.72 (5) 2.589 (2) 151 (3)
C12—H12⋯Cg1i 1.03 (4) 2.72 (3) 3.536 (3) 137 (3)
C16—H16CCg1ii 0.98 (4) 2.71 (3) 3.563 (3) 149 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z]. Cg 1 is the centroid of the C10–C15 ring.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Because of structural flexibility and their application for switching materials and so on, Schiff base compounds are one of the most extensively used ligands in the field of coordination chemistry (Yamada, 1999). Especially, aiming at multifunctional chiral materials, we have investigated Schiff base CuII, NiII, or ZnII complexes in view of thermally induced structural phase transition in the solid state (Akitsu & Einaga, 2004), structural change by occlusion of solvents (Akitsu & Einaga, 2005a), chiral conformational change in a solution induced by a photochromic solute (Akitsu & Einaga, 2005b,2006a; Akitsu, 2007), and novel induced CD to achiral metallodendrimers (Akitsu et al., 2009). On the other hand, free Schiff base ligands (Akitsu et al., 2004, Akitsu & Einaga, 2006b) have been also studied as multifunctional components, for example photochromic and thermochromic or fluorescence materials (Hadjoudis et al., 2004) and nonlinear optical materials (Sliwa et al., 2005) and so on. In order to clarify the role of electron-donating methoxy group, as free ligands for tautomerism and photochromism (Hadjoudis et al., 1987), crystal structure of the title compound, (I), has been determined.

Crystal structure of (I) is similar to those of the analogous derivatives (Santoni & Rehder, 2004; Akitsu & Einaga, 2006b). Molecule of (I) (Fig. 1) adopts an E configuration with respect to the imine CN double bond with a C6—C7—N1—C8 torsion angle of -179.40 (18)°. Thus, the π-conjugate system around the imine group is essentially planar. The C1—O1 bond distance of 1.361 (3) Å suggests that it is in the phenol-imine tautomer. The contraction of the C7N1 bond [1.283 (3) Å] is also in agreement with the phenol-imine tautomer. As for the methoxy group, the O2—C4 and O2—C16 bond distaces are 1.374 (3) and 1.422 (3) Å, respectively, and the C4—O2—C16 bond angle is 116.9 (2)°. Beside them, geometric parameters reported here agree with corresponding values reported for analogous Schiff base compounds containing the 1-phenylethylamine group (Antonov et al., 1995; Liu et al., 1997). The planarity of (I) is stabilized by an intramolecular O—H···N hydrogen bond (Table 1). However, there is no intermolecular hydrogen bonds associated with the methoxy group. The crystal packing is stabilized by C—H···π interactions involving the C10-C15 ring.

Related literature top

For related literature, see: Akitsu (2007); Akitsu & Einaga (2004, 2005a,b, 2006a,b); Akitsu et al. (2004, 2009); Antonov et al. (1995); Hadjoudis et al. (1987, 2004); Liu et al. (1997); Santoni & Rehder (2004); Sliwa et al. (2005); Yamada (1999).

Experimental top

Treatment of equimolar R-1-phenylethylamine and 5-methoxysalicylaldehyde in methanol at 298 K overnight gave rise to a yellow-green compound (I). Prismatic crystals of (I) were grown from the resulting solution over a period of several days (yield 39.0%). Analysis found: C 73.98, H 6.49, N 5.37%; calculated for C16H17NO2: C 75.27, H 6.71, N, 5.49%. (precipitates containing non-stoichiometric cystalline water) m.p. 371 K. IR (Nujol, ν, cm-1): 1632 (imine band). UV-VIS (diffuse reflectance, nm): 255, 329, 470s h.

Refinement top

All H atoms were located in a difference map and refined freely [O-H = 0.98 (3) Å and C-H = 0.91 (3)-1.02 (3) Å]. Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
(R)-4-methoxy-2-[(1-phenylethyl)iminomethyl]phenol top
Crystal data top
C16H17NO2F(000) = 272
Mr = 255.31Dx = 1.253 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1657 reflections
a = 8.270 (4) Åθ = 2.5–27.5°
b = 5.886 (3) ŵ = 0.08 mm1
c = 13.920 (7) ÅT = 100 K
β = 93.254 (7)°Plate, yellow
V = 676.4 (6) Å30.21 × 0.19 × 0.07 mm
Z = 2
Data collection top
Brruker SMART CCD area-detector
diffractometer
1677 independent reflections
Radiation source: fine-focus sealed tube1454 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 8.333 pixels mm-1θmax = 27.5°, θmin = 1.5°
ϕ and ω scansh = 108
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 77
Tmin = 0.983, Tmax = 0.994l = 1716
3805 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088All H-atom parameters refined
S = 0.99 w = 1/[σ2(Fo2) + (0.038P)2]
where P = (Fo2 + 2Fc2)/3
1677 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C16H17NO2V = 676.4 (6) Å3
Mr = 255.31Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.270 (4) ŵ = 0.08 mm1
b = 5.886 (3) ÅT = 100 K
c = 13.920 (7) Å0.21 × 0.19 × 0.07 mm
β = 93.254 (7)°
Data collection top
Brruker SMART CCD area-detector
diffractometer
1677 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1454 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.994Rint = 0.074
3805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.088All H-atom parameters refined
S = 0.99Δρmax = 0.31 e Å3
1677 reflectionsΔρmin = 0.18 e Å3
240 parameters
Special details top

Experimental. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10235 (18)0.3421 (3)0.24677 (11)0.0246 (4)
O20.34502 (18)0.0560 (3)0.11019 (11)0.0236 (4)
N10.0495 (2)0.0409 (3)0.26781 (13)0.0209 (4)
C10.1599 (2)0.2610 (4)0.15989 (16)0.0204 (5)
C20.2717 (3)0.3907 (4)0.10592 (17)0.0235 (5)
C30.3316 (2)0.3147 (4)0.01743 (17)0.0214 (5)
C40.2782 (2)0.1095 (4)0.02039 (15)0.0202 (5)
C50.1684 (3)0.0231 (4)0.03255 (16)0.0200 (5)
C60.1087 (2)0.0500 (4)0.12470 (15)0.0190 (5)
C70.0002 (2)0.0964 (4)0.18197 (16)0.0198 (5)
C80.1607 (3)0.1916 (4)0.32334 (16)0.0204 (5)
C90.0764 (3)0.2731 (5)0.41192 (19)0.0253 (6)
C100.3138 (2)0.0565 (4)0.34822 (15)0.0200 (5)
C150.4606 (3)0.1240 (5)0.31292 (16)0.0237 (5)
C140.5988 (3)0.0075 (5)0.32986 (17)0.0265 (6)
C130.5917 (3)0.2063 (5)0.38184 (17)0.0269 (6)
C120.4471 (3)0.2741 (5)0.41913 (16)0.0251 (5)
C110.3098 (3)0.1428 (4)0.40203 (16)0.0224 (5)
C160.3038 (3)0.1589 (5)0.14857 (18)0.0255 (6)
H10.041 (3)0.216 (6)0.2758 (19)0.044 (9)*
H20.307 (3)0.526 (5)0.1294 (16)0.020 (6)*
H30.408 (3)0.398 (5)0.0179 (16)0.024 (6)*
H50.129 (3)0.164 (4)0.0095 (14)0.013 (6)*
H70.039 (3)0.236 (5)0.1538 (15)0.021 (6)*
H80.186 (3)0.326 (5)0.2845 (16)0.022 (6)*
H150.466 (3)0.261 (5)0.2753 (19)0.036 (8)*
H140.701 (3)0.044 (5)0.3014 (16)0.030 (7)*
H130.684 (3)0.319 (6)0.390 (2)0.046 (8)*
H120.443 (3)0.421 (5)0.4568 (16)0.028 (7)*
H110.210 (3)0.198 (5)0.4247 (16)0.029 (6)*
H9A0.045 (3)0.149 (5)0.4484 (17)0.031 (7)*
H16A0.330 (3)0.274 (5)0.1053 (18)0.031 (7)*
H9B0.020 (3)0.371 (5)0.3935 (16)0.026 (6)*
H16B0.191 (3)0.172 (4)0.1610 (14)0.014 (5)*
H9C0.147 (3)0.381 (6)0.4531 (19)0.043 (8)*
H16C0.365 (3)0.172 (5)0.2090 (18)0.027 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0236 (8)0.0249 (10)0.0252 (9)0.0010 (8)0.0002 (7)0.0063 (8)
O20.0230 (8)0.0276 (10)0.0198 (8)0.0002 (7)0.0012 (6)0.0021 (8)
N10.0171 (8)0.0238 (11)0.0218 (10)0.0012 (8)0.0011 (7)0.0013 (9)
C10.0191 (10)0.0217 (14)0.0208 (12)0.0029 (10)0.0046 (9)0.0015 (10)
C20.0208 (10)0.0195 (13)0.0306 (13)0.0001 (10)0.0055 (9)0.0011 (12)
C30.0144 (10)0.0230 (13)0.0268 (13)0.0015 (9)0.0023 (9)0.0066 (11)
C40.0174 (10)0.0251 (14)0.0184 (12)0.0031 (9)0.0035 (9)0.0022 (10)
C50.0173 (10)0.0210 (13)0.0219 (12)0.0021 (9)0.0033 (8)0.0003 (10)
C60.0160 (9)0.0203 (12)0.0209 (11)0.0021 (9)0.0031 (9)0.0001 (10)
C70.0155 (9)0.0230 (13)0.0212 (12)0.0017 (9)0.0043 (8)0.0002 (10)
C80.0202 (10)0.0194 (12)0.0215 (12)0.0014 (9)0.0002 (9)0.0014 (10)
C90.0233 (11)0.0265 (14)0.0263 (13)0.0046 (11)0.0019 (10)0.0000 (11)
C100.0219 (10)0.0228 (13)0.0149 (11)0.0009 (10)0.0015 (8)0.0034 (10)
C150.0234 (11)0.0286 (14)0.0193 (12)0.0033 (10)0.0024 (9)0.0005 (11)
C140.0213 (11)0.0342 (16)0.0242 (13)0.0011 (10)0.0042 (9)0.0044 (11)
C130.0258 (12)0.0322 (15)0.0224 (13)0.0081 (11)0.0012 (10)0.0043 (11)
C120.0302 (12)0.0255 (14)0.0192 (12)0.0041 (11)0.0014 (9)0.0002 (11)
C110.0219 (11)0.0233 (13)0.0219 (12)0.0021 (10)0.0011 (9)0.0000 (10)
C160.0269 (12)0.0280 (15)0.0217 (14)0.0011 (11)0.0011 (10)0.0009 (12)
Geometric parameters (Å, º) top
O1—C11.361 (3)C8—H80.99 (3)
O1—H10.98 (3)C9—H9A0.93 (3)
O2—C41.374 (3)C9—H9B1.00 (3)
O2—C161.422 (3)C9—H9C1.02 (3)
N1—C71.283 (3)C10—C151.393 (3)
N1—C81.466 (3)C10—C111.393 (3)
C1—C21.387 (3)C15—C141.390 (4)
C1—C61.409 (3)C15—H150.96 (3)
C2—C31.376 (3)C14—C131.379 (4)
C2—H20.91 (3)C14—H141.00 (2)
C3—C41.399 (3)C13—C121.389 (3)
C3—H30.92 (3)C13—H131.01 (3)
C4—C51.379 (3)C12—C111.383 (3)
C5—C61.415 (3)C12—H121.01 (3)
C5—H50.95 (2)C11—H110.95 (3)
C6—C71.452 (3)C16—H16A0.94 (3)
C7—H70.97 (3)C16—H16B0.96 (2)
C8—C101.519 (3)C16—H16C0.96 (3)
C8—C91.528 (3)
C1—O1—H1104.5 (17)C8—C9—H9A110.3 (16)
C4—O2—C16116.9 (2)C8—C9—H9B111.4 (13)
C7—N1—C8119.6 (2)H9A—C9—H9B111 (2)
O1—C1—C2118.5 (2)C8—C9—H9C112.1 (14)
O1—C1—C6121.4 (2)H9A—C9—H9C110 (2)
C2—C1—C6120.1 (2)H9B—C9—H9C102 (2)
C3—C2—C1120.0 (2)C15—C10—C11118.5 (2)
C3—C2—H2119.8 (16)C15—C10—C8120.2 (2)
C1—C2—H2120.2 (16)C11—C10—C8121.22 (19)
C2—C3—C4120.8 (2)C14—C15—C10120.4 (2)
C2—C3—H3120.4 (16)C14—C15—H15119.8 (16)
C4—C3—H3118.8 (16)C10—C15—H15119.8 (16)
O2—C4—C5125.1 (2)C13—C14—C15120.2 (2)
O2—C4—C3114.9 (2)C13—C14—H14121.9 (17)
C5—C4—C3120.0 (2)C15—C14—H14117.9 (17)
C4—C5—C6119.9 (2)C14—C13—C12120.2 (2)
C4—C5—H5122.7 (14)C14—C13—H13124.3 (17)
C6—C5—H5117.4 (14)C12—C13—H13115.3 (18)
C1—C6—C5119.1 (2)C11—C12—C13119.4 (2)
C1—C6—C7121.4 (2)C11—C12—H12121.2 (14)
C5—C6—C7119.4 (2)C13—C12—H12119.4 (14)
N1—C7—C6121.0 (2)C12—C11—C10121.2 (2)
N1—C7—H7119.8 (14)C12—C11—H11117.8 (17)
C6—C7—H7119.2 (14)C10—C11—H11120.8 (17)
N1—C8—C10107.1 (2)O2—C16—H16A109.4 (17)
N1—C8—C9108.32 (18)O2—C16—H16B113.2 (14)
C10—C8—C9113.1 (2)H16A—C16—H16B109 (2)
N1—C8—H8110.1 (14)O2—C16—H16C106.1 (17)
C10—C8—H8110.1 (14)H16A—C16—H16C112 (2)
C9—C8—H8108.1 (14)H16B—C16—H16C107.6 (18)
O1—C1—C2—C3179.53 (18)C1—C6—C7—N12.0 (3)
C6—C1—C2—C30.6 (3)C5—C6—C7—N1176.18 (18)
C1—C2—C3—C41.6 (3)C7—N1—C8—C10120.2 (2)
C16—O2—C4—C53.7 (3)C7—N1—C8—C9117.5 (2)
C16—O2—C4—C3175.42 (18)N1—C8—C10—C15116.8 (2)
C2—C3—C4—O2178.62 (18)C9—C8—C10—C15124.0 (2)
C2—C3—C4—C52.2 (3)N1—C8—C10—C1159.8 (3)
O2—C4—C5—C6179.69 (17)C9—C8—C10—C1159.5 (3)
C3—C4—C5—C60.6 (3)C11—C10—C15—C141.1 (3)
O1—C1—C6—C5177.98 (17)C8—C10—C15—C14175.5 (2)
C2—C1—C6—C52.2 (3)C10—C15—C14—C130.0 (4)
O1—C1—C6—C73.8 (3)C15—C14—C13—C121.2 (4)
C2—C1—C6—C7176.03 (19)C14—C13—C12—C111.3 (4)
C4—C5—C6—C11.5 (3)C13—C12—C11—C100.1 (4)
C4—C5—C6—C7176.70 (19)C15—C10—C11—C121.1 (3)
C8—N1—C7—C6179.40 (18)C8—C10—C11—C12175.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.97 (3)1.72 (5)2.589 (2)151 (3)
C12—H12···Cg1i1.03 (4)2.72 (3)3.536 (3)137 (3)
C16—H16C···Cg1ii0.98 (4)2.71 (3)3.563 (3)149 (3)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y1/2, z.

Experimental details

Crystal data
Chemical formulaC16H17NO2
Mr255.31
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.270 (4), 5.886 (3), 13.920 (7)
β (°) 93.254 (7)
V3)676.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.21 × 0.19 × 0.07
Data collection
DiffractometerBrruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.983, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
3805, 1677, 1454
Rint0.074
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.088, 0.99
No. of reflections1677
No. of parameters240
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.31, 0.18

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.97 (3)1.72 (5)2.589 (2)151 (3)
C12—H12···Cg1i1.03 (4)2.72 (3)3.536 (3)137 (3)
C16—H16C···Cg1ii0.98 (4)2.71 (3)3.563 (3)149 (3)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y1/2, z.
 

Acknowledgements

This work was supported by the Kato Foundation for the Promotion of Science.

References

First citationAkitsu, T. (2007). Polyhedron, 26, 2527–2535.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T. & Einaga, Y. (2004). Acta Cryst. C60, m640–m642.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkitsu, T. & Einaga, Y. (2005a). Polyhedron, 24, 1869–1877.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T. & Einaga, Y. (2005b). Polyhedron, 24, 2933–2943.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T. & Einaga, Y. (2006a). Polyhedron, 25, 1089–1095.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T. & Einaga, Y. (2006b). Acta Cryst. E62, o4315–o4317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkitsu, T., Takeuchi, Y. & Einaga, Y. (2004). Acta Cryst. C60, o801–o802.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkitsu, T., Yamaguchi, J., Uchida, N. & Aritake, Y. (2009). Res. Lett. Mater. Sci. 484172 (4 pages).  Google Scholar
First citationAntonov, D. Y., Belokon, Y. N., Ikonnikov, N. S., Orlova, S. A., Pisarevsky, A. P., Raevski, N. I., Rozenberg, V. I., Sergeeva, E. V., Struchkov, Y. T., Tararov, V. I. & Vorontsov, E. V. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1873–1879.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. A, 162, 521–530.  Web of Science CSD CrossRef CAS Google Scholar
First citationHadjoudis, E., Vitterakis, M. & Mavridis, I. M. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationLiu, Q., Ding, M., Lin, Y. & Xing, Y. (1997). J. Organomet. Chem. 548, 139–142.  Web of Science CrossRef CAS Google Scholar
First citationSantoni, G. & Rehder, D. (2004). J. Inorg. Biochem. 98, 758–764.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliwa, M., Letrard, S., Malfant, I., Nierlich, M., Lacroix, P. G., Asahi, T., Masuhara, H., Yu, P. & Nakatani, K. (2005). Chem. Mater. 17, 4727–4735.  Web of Science CSD CrossRef CAS Google Scholar
First citationYamada, S. (1999). Coord. Chem. Rev. 190192, 537–555.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds