organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2392-o2393

(E)-N′-(3,4-Di­meth­oxy­benzyl­­idene)-2,4-di­hydroxy­benzohydrazide methanol solvate

aCollege of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
*Correspondence e-mail: liusongcai09@163.com,

(Received 2 September 2009; accepted 4 September 2009; online 9 September 2009)

The title compound, C16H16N2O5·CH3OH, was obtained from a condensation reaction of 3,4-dimethoxy­benzaldehyde and 2,4-dihydroxy­benzohydrazide. The non-H atoms of the Schiff base mol­ecule are approximately coplanar (r.m.s. deviation = 0.043 Å) and the dihedral angle between the two benzene rings is 1.6 (1)°. The mol­ecule adopts an E configuration with respect to the C=N double bond. An intra­molecular O—H⋯O hydrogen bond is observed. The Schiff base and methanol mol­ecules are linked into a two-dimensional network parallel to (10[\overline{1}]) by inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For background to Schiff base compounds, hydrazone compounds and their biological properties, see: Kucukguzel et al. (2006[Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]); Khattab et al. (2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Shan et al. (2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.]); Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Ma et al. (2008[Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.]); Diao et al. (2008a[Diao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008a). Acta Cryst. E64, o470.],b[Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008b). Acta Cryst. E64, o101.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O5·CH4O

  • Mr = 348.35

  • Monoclinic, P 21 /n

  • a = 8.497 (1) Å

  • b = 17.431 (2) Å

  • c = 11.933 (2) Å

  • β = 102.93 (2)°

  • V = 1722.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.25 × 0.23 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.977

  • 10465 measured reflections

  • 3732 independent reflections

  • 2017 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.129

  • S = 1.03

  • 3732 reflections

  • 235 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.90 (1) 2.217 (10) 3.108 (2) 170 (2)
O6—H6⋯N2ii 0.82 2.55 3.133 (2) 129
O6—H6⋯O3ii 0.82 2.02 2.807 (2) 161
O2—H2⋯O6iii 0.82 1.79 2.599 (2) 171
O1—H1⋯O3 0.82 1.80 2.534 (2) 148
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones and Schiff bases have been attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Kucukguzel et al., 2006; Khattab et al., 2005; Karthikeyan et al., 2006; Okabe et al., 1993). Recently, a large number of hydrazone derivatives have been prepared and structurally characterized (Shan et al., 2008; Fun et al., 2008; Ma et al., 2008; Diao et al., 2008a,b; Ejsmont et al., 2008). As part of the ongoing study, we report herein the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The compound consists of a Schiff base molecule and a methanol molecule. The dihedral angle between the two benzene rings is 1.6 (1)°. The Schiff base molecule displays an E configuration about the CN bond. The bond lengths are typical (Allen et al., 1987). The molecules are linked into a two-dimensional network parallel to the (101) by intermolecular N—H···O, O—H···N, and O—H···O hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For background to Schiff base compounds, hydrazone compounds and their biological properties, see: Kucukguzel et al. (2006); Khattab et al. (2005); Karthikeyan et al. (2006); Okabe et al. (1993). For bond-length data, see: Allen et al. (1987). For related structures, see: Shan et al. (2008); Fun et al. (2008); Ma et al. (2008); Diao et al. (2008a,b); Ejsmont et al. (2008).

Experimental top

3,4-Dimethoxybenzaldehyde (1.0 mmol, 166.2 mg) was dissolved in methanol (50 ml), then 2,4-dihydroxybenzohydrazide (1.0 mmol, 168.2 mg) was added slowly into the solution, and the mixture was kept at reflux with continuous stirring for 1 h. After the solution had cooled to room temperature colourless crystallites appeared. The crystallites were filtered and washed with methanol for three times. Recrystallization from an absolute methanol yielded block-shaped single crystals of the title compound.

Refinement top

Atom H1A was located from a difference Fourier map and refined isotropically, with the N-H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions with C-H = 0.93-0.96 Å and O-H = 0.82 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl). A rotating group model was used for methyl and hydroxyl groups.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates an intramolecular hydrogen bond.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
(E)-N'-(3,4-Dimethoxybenzylidene)-2,4-dihydroxybenzohydrazide methanol solvate top
Crystal data top
C16H16N2O5·CH4OF(000) = 736
Mr = 348.35Dx = 1.343 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1327 reflections
a = 8.497 (1) Åθ = 2.3–24.5°
b = 17.431 (2) ŵ = 0.10 mm1
c = 11.933 (2) ÅT = 298 K
β = 102.93 (2)°Block, colourless
V = 1722.6 (4) Å30.25 × 0.23 × 0.23 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3732 independent reflections
Radiation source: fine-focus sealed tube2017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.975, Tmax = 0.977k = 2022
10465 measured reflectionsl = 157
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.0211P]
where P = (Fo2 + 2Fc2)/3
3732 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C16H16N2O5·CH4OV = 1722.6 (4) Å3
Mr = 348.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.497 (1) ŵ = 0.10 mm1
b = 17.431 (2) ÅT = 298 K
c = 11.933 (2) Å0.25 × 0.23 × 0.23 mm
β = 102.93 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3732 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2017 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.977Rint = 0.043
10465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.15 e Å3
3732 reflectionsΔρmin = 0.19 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9655 (2)0.08862 (10)0.61461 (15)0.0408 (4)
N20.8536 (2)0.03538 (10)0.56016 (14)0.0414 (4)
O11.2219 (2)0.05972 (9)0.95309 (12)0.0623 (5)
H11.15610.03160.91180.093*
O21.52034 (18)0.28449 (9)0.94432 (11)0.0499 (4)
H21.54420.31490.89840.075*
O31.01873 (19)0.01674 (9)0.77490 (12)0.0544 (4)
O40.42243 (18)0.17176 (9)0.40757 (13)0.0562 (4)
O50.29676 (18)0.13286 (8)0.19882 (13)0.0582 (5)
O60.6296 (2)0.37824 (9)0.81028 (13)0.0639 (5)
H60.59490.42220.80070.096*
C11.1618 (2)0.13446 (11)0.77945 (16)0.0379 (5)
C21.2479 (3)0.12222 (12)0.89285 (17)0.0419 (5)
C31.3640 (3)0.17364 (13)0.94638 (17)0.0445 (5)
H31.41780.16551.02230.053*
C41.4008 (2)0.23680 (12)0.88820 (17)0.0393 (5)
C51.3173 (3)0.25089 (12)0.77654 (17)0.0461 (6)
H51.34010.29420.73750.055*
C61.2005 (2)0.20011 (12)0.72414 (17)0.0442 (6)
H6A1.14500.20980.64900.053*
C71.0444 (2)0.07663 (12)0.72359 (17)0.0401 (5)
C80.7848 (2)0.05124 (12)0.45725 (18)0.0412 (5)
H80.81520.09560.42420.049*
C90.6598 (2)0.00287 (11)0.38858 (17)0.0373 (5)
C100.6063 (2)0.06345 (11)0.43485 (17)0.0408 (5)
H100.65320.07810.50980.049*
C110.4845 (2)0.10693 (11)0.36970 (18)0.0414 (5)
C120.4150 (2)0.08531 (12)0.25628 (18)0.0434 (5)
C130.4679 (3)0.02028 (12)0.21043 (18)0.0479 (6)
H130.42180.00570.13530.057*
C140.5908 (3)0.02357 (12)0.27733 (17)0.0443 (5)
H140.62670.06740.24630.053*
C150.4975 (3)0.19856 (14)0.5184 (2)0.0648 (7)
H15A0.60880.21000.52090.097*
H15B0.44370.24410.53530.097*
H15C0.49120.15970.57430.097*
C160.2220 (3)0.11211 (15)0.0836 (2)0.0661 (7)
H16A0.17950.06100.08260.099*
H16B0.13580.14730.05390.099*
H16C0.30040.11410.03690.099*
C170.6766 (4)0.35311 (16)0.7103 (2)0.0814 (9)
H17A0.78120.37360.70930.122*
H17B0.59950.37050.64360.122*
H17C0.68120.29810.70990.122*
H1A0.979 (2)0.1297 (8)0.5719 (15)0.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0420 (10)0.0382 (11)0.0393 (11)0.0067 (9)0.0028 (8)0.0003 (8)
N20.0418 (10)0.0372 (11)0.0433 (11)0.0048 (8)0.0056 (8)0.0044 (8)
O10.0787 (13)0.0582 (11)0.0429 (10)0.0152 (9)0.0014 (8)0.0154 (8)
O20.0562 (10)0.0511 (10)0.0370 (9)0.0089 (8)0.0011 (7)0.0071 (7)
O30.0647 (11)0.0474 (10)0.0475 (10)0.0106 (8)0.0049 (8)0.0089 (7)
O40.0589 (10)0.0405 (9)0.0654 (11)0.0096 (8)0.0057 (8)0.0064 (8)
O50.0585 (10)0.0475 (10)0.0598 (11)0.0110 (8)0.0056 (8)0.0038 (8)
O60.0943 (14)0.0413 (10)0.0577 (11)0.0014 (10)0.0201 (9)0.0022 (8)
C10.0427 (12)0.0373 (12)0.0311 (12)0.0030 (10)0.0031 (9)0.0000 (9)
C20.0522 (13)0.0417 (13)0.0321 (12)0.0043 (11)0.0099 (10)0.0038 (10)
C30.0528 (13)0.0486 (14)0.0286 (12)0.0043 (11)0.0012 (10)0.0003 (10)
C40.0408 (12)0.0401 (13)0.0340 (12)0.0023 (10)0.0023 (9)0.0099 (10)
C50.0559 (14)0.0419 (14)0.0354 (13)0.0025 (11)0.0005 (10)0.0033 (10)
C60.0521 (13)0.0445 (14)0.0297 (12)0.0002 (11)0.0043 (10)0.0016 (10)
C70.0419 (12)0.0399 (13)0.0367 (13)0.0026 (10)0.0048 (10)0.0000 (10)
C80.0415 (12)0.0352 (12)0.0453 (14)0.0023 (10)0.0063 (10)0.0015 (10)
C90.0368 (12)0.0316 (12)0.0419 (13)0.0005 (9)0.0053 (9)0.0040 (9)
C100.0418 (12)0.0368 (13)0.0416 (13)0.0029 (10)0.0047 (10)0.0026 (10)
C110.0424 (12)0.0294 (12)0.0530 (14)0.0006 (10)0.0116 (10)0.0015 (10)
C120.0414 (12)0.0339 (12)0.0513 (15)0.0027 (10)0.0026 (10)0.0103 (10)
C130.0506 (14)0.0445 (14)0.0446 (14)0.0028 (11)0.0022 (11)0.0019 (11)
C140.0482 (13)0.0377 (13)0.0449 (14)0.0052 (10)0.0059 (10)0.0011 (10)
C150.0699 (17)0.0456 (15)0.0781 (19)0.0015 (13)0.0147 (14)0.0184 (13)
C160.0569 (15)0.0674 (18)0.0628 (18)0.0137 (14)0.0104 (12)0.0078 (13)
C170.114 (3)0.072 (2)0.0633 (19)0.0190 (18)0.0304 (17)0.0166 (15)
Geometric parameters (Å, º) top
N1—C71.339 (3)C5—H50.93
N1—N21.382 (2)C6—H6A0.93
N1—H1A0.901 (9)C8—C91.456 (3)
N2—C81.267 (2)C8—H80.93
O1—C21.350 (2)C9—C141.374 (3)
O1—H10.82C9—C101.400 (3)
O2—C41.367 (2)C10—C111.375 (3)
O2—H20.82C10—H100.93
O3—C71.254 (2)C11—C121.402 (3)
O4—C111.366 (2)C12—C131.377 (3)
O4—C151.413 (3)C13—C141.393 (3)
O5—C121.363 (2)C13—H130.93
O5—C161.426 (3)C14—H140.93
O6—C171.410 (3)C15—H15A0.96
O6—H60.82C15—H15B0.96
C1—C61.397 (3)C15—H15C0.96
C1—C21.403 (3)C16—H16A0.96
C1—C71.469 (3)C16—H16B0.96
C2—C31.380 (3)C16—H16C0.96
C3—C41.374 (3)C17—H17A0.96
C3—H30.93C17—H17B0.96
C4—C51.384 (3)C17—H17C0.96
C5—C61.372 (3)
C7—N1—N2119.58 (17)C10—C9—C8121.09 (19)
C7—N1—H1A125.0 (14)C11—C10—C9120.1 (2)
N2—N1—H1A115.4 (13)C11—C10—H10119.9
C8—N2—N1115.41 (17)C9—C10—H10119.9
C2—O1—H1109.5O4—C11—C10124.5 (2)
C4—O2—H2109.5O4—C11—C12115.55 (18)
C11—O4—C15117.13 (17)C10—C11—C12119.9 (2)
C12—O5—C16116.74 (18)O5—C12—C13124.7 (2)
C17—O6—H6109.5O5—C12—C11115.22 (19)
C6—C1—C2116.94 (18)C13—C12—C11120.03 (19)
C6—C1—C7123.76 (18)C12—C13—C14119.6 (2)
C2—C1—C7119.21 (18)C12—C13—H13120.2
O1—C2—C3117.58 (19)C14—C13—H13120.2
O1—C2—C1121.59 (19)C9—C14—C13120.9 (2)
C3—C2—C1120.83 (19)C9—C14—H14119.6
C4—C3—C2120.42 (19)C13—C14—H14119.6
C4—C3—H3119.8O4—C15—H15A109.5
C2—C3—H3119.8O4—C15—H15B109.5
O2—C4—C3117.89 (18)H15A—C15—H15B109.5
O2—C4—C5121.9 (2)O4—C15—H15C109.5
C3—C4—C5120.2 (2)H15A—C15—H15C109.5
C6—C5—C4119.1 (2)H15B—C15—H15C109.5
C6—C5—H5120.4O5—C16—H16A109.5
C4—C5—H5120.4O5—C16—H16B109.5
C5—C6—C1122.43 (19)H16A—C16—H16B109.5
C5—C6—H6A118.8O5—C16—H16C109.5
C1—C6—H6A118.8H16A—C16—H16C109.5
O3—C7—N1120.01 (19)H16B—C16—H16C109.5
O3—C7—C1121.63 (19)O6—C17—H17A109.5
N1—C7—C1118.35 (19)O6—C17—H17B109.5
N2—C8—C9122.7 (2)H17A—C17—H17B109.5
N2—C8—H8118.7O6—C17—H17C109.5
C9—C8—H8118.7H17A—C17—H17C109.5
C14—C9—C10119.45 (18)H17B—C17—H17C109.5
C14—C9—C8119.44 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.90 (1)2.22 (1)3.108 (2)170 (2)
O6—H6···N2ii0.822.553.133 (2)129
O6—H6···O3ii0.822.022.807 (2)161
O2—H2···O6iii0.821.792.599 (2)171
O1—H1···O30.821.802.534 (2)148
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H16N2O5·CH4O
Mr348.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.497 (1), 17.431 (2), 11.933 (2)
β (°) 102.93 (2)
V3)1722.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.23 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.975, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
10465, 3732, 2017
Rint0.043
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.129, 1.03
No. of reflections3732
No. of parameters235
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.19

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.90 (1)2.217 (10)3.108 (2)170 (2)
O6—H6···N2ii0.822.553.133 (2)129
O6—H6···O3ii0.822.022.807 (2)161
O2—H2···O6iii0.821.792.599 (2)171
O1—H1···O30.821.802.534 (2)148
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008a). Acta Cryst. E64, o470.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008b). Acta Cryst. E64, o101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationMa, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2392-o2393
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds