organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2558-o2559

8-[(3,3-Di­methyl­oxiran-2-yl)meth­oxy­meth­yl]-11-hydr­­oxy-2-isopropenyl-5-methyl-12-oxo-1,2,3,12-tetra­hydro­pyrano[3,2-a]xanthen-1-yl acetate

aReserch Centre for Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai, Bangkok 10330, Thailand, and bDepartment of Physics, Faculty of Science and Technology, Thammasart University, PathumThani 12121, Thailand
*Correspondence e-mail: nongnuj.j@chula.ac.th

(Received 6 September 2009; accepted 22 September 2009; online 26 September 2009)

The title compound, commonly known as 14-methoxy­tajixanthone-25-acetate, C28H30O8, was isolated from Emericella variecolor. The central xanthone core is approximately planar (r.m.s. deviation = 0.084 Å). The dihydro­pyran ring adopts a distorted half-chair conformation. The oxirane plane is oriented at an angle of 63.3 (2)° with respect to the phenol group. An intra­molecular O—H⋯O hydrogen bond forms an S(6) ring. In the crystal, mol­ecules are linked into a two-dimensional network parallel to the ab plane by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to 14-methoxy­tajixanthone-25-acetate, see: Bringmann et al. (2003[Bringmann, G., Lang, G., Steffens, S., Gunther, E. & Schaumann, K. (2003). Phytochemistry, 63, 437-443.]); Pornpakakul et al. (2006[Pornpakakul, S., Liangsakul, J., Ngamrojanavanich, N., Roengsumran, S., Sihanonth, P., Piapukiew, J., Sangvichien, E., Puthong, S. & Petsom, A. (2006). Arch. Pharm. Res. 29, 140-144.]); Raper & Fennel (1965[Raper, K. B. & Fennel, D. I. (1965). The Genus Aspergillus. Baltimore: The Williams and Wilkins Company.]). For related structures, see: Fukuyama et al. (1978[Fukuyama, K., Hamada, K., Tsukihara, T. & Katsube, Y. (1978). Bull. Chem. Soc. Jpn, 51,37-44.]); Lee et al. (2005[Lee, B. W., Gai, S. W., Park, K. M. & Park, K. H. (2005). J. Nat. Prod. 68, 456-458.]).

[Scheme 1]

Experimental

Crystal data
  • C28H30O8

  • Mr = 494.54

  • Monoclinic, P 21

  • a = 11.3323 (1) Å

  • b = 8.8199 (2) Å

  • c = 12.8741 (3) Å

  • β = 91.765 (1)°

  • V = 1286.15 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.40 × 0.24 × 0.18 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: none

  • 9335 measured reflections

  • 3840 independent reflections

  • 2691 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.141

  • S = 1.06

  • 3840 reflections

  • 335 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.82 1.82 2.554 (3) 148
C3—H3B⋯O8i 0.97 2.57 3.345 (5) 137
C9—H9⋯O4ii 0.93 2.55 3.434 (4) 160
Symmetry codes: (i) x+1, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2006[Bruker (2006). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2006[Bruker (2006). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Emericella variecolor is a perfect state of Aspergillus variecolor(syn. Aspergillus stellatus) (Raper & Fennel, 1965), which produces a variety of compounds such as xanthones (Bringmann et al., 2003; Pornpakakul et al., 2006)

Our research group has investigated metabolites of Emericella variecolor, an endophytic fungus of Croton oblongifolius. Four xanthones including shamixanthone, 14-methoxytajixanthone-25-acetate (the title compound), tajixanthone methanoate, and tajixanthone hydrate, were isolated from mycelia. All compounds were tested for cytotoxic activity against various human tumor cell lines, including gastric carcinoma, colon carcinoma, breast carcinoma, human hepatocarcinoma, and lung carcinoma. Under the test conditions it was found that 14-methoxy tajixanthone-25-acetate and tajixanthone hydrate are almost as active as doxorubicin hydrochloride against gastric carcinoma (KATO3) and breast carcinoma (BT474) (Pornpakakul et al., 2006). In this work, we report the crystal structure of 14-methoxytajixanthone-25-acetate.

The central xanthone core is approximately planar (r.m.s. deviation of 0.084 Å). The dihydropyran ring adopts a distorted half-chair conformation, with atoms C2 and C3 deviated 0.357 (3)Å and -0.315 (3) Å, respectively, out of the mean plane [r.m.s. deviation 0.214 Å]. The orientation of the isobutene side chain with respect to the acetate substitutent is indicated by the torsion angle O6—C1—C2—C21 of 166.1 (3)°, indicating a anti-periplanar conformation. The oxirane plane is inclined at an angle of 63.3 (2)° with respect to the phenol ring.

The crystal packing is stabilized by weak intermolecular C—H···O interactions (Fig.2).

Related literature top

For general background to 14-methoxytajixanthone-25-acetate, see: Bringmann et al. (2003); Pornpakakul et al. (2006); Raper & Fennel (1965). For related structures, see: Fukuyama et al. (1978); Lee et al. (2005).

Experimental top

Seventy-five Erlenmeyer flasks (250 ml) containing malt extract (2 g) and water (100 ml per flask), were autoclaved twice at 121°C for 40 min. Pure culture of E.variecolor grown on PDA at room temperature for 7 days were cut into disks 8 mm in a diameter. Two disks were transferred under sterile conditions into each Erlenmeyer flask and then statically incubated for 6 weeks at room temperature. The fermentation broth was filtered through Whatman No.1 filter paper.

The mycelium (253 g wet weight) was extracted with methanol (500 ml × 10) to yield crude methanol extract that was a dark reddish solid (13.95 g). The dark reddish solid was re-extracted with ethyl acetate (500 ml × 10) to give 5.86 g of crude ethyl acetate extract. This extract was then separated by silica gel column chromatography (230–400 mesh, 100 g) and eluted with an n-hexane-ethyl acetate mixture with stepwise increasing polarity. A total of 600 fractions of 100 ml each were collected and combined on the basis of TLC profile. UV light and vanillin/H2SO4/EtOH reagent were used as detecting methods. The combined fraction (154 mg) contained the title compound as a main component. It was obtained from elution with hexane-EtOAc (80:20) and crystallized to give 14-methoxytajixanthone-25-acetate (75 mg). Suitable single crystals of the title compound were obtained by crystallization from a mixture of benzene/diethyl ether/chloroform.

Refinement top

The methyl group of the methoxy group is disordered over two orientations with occupancies of 0.700 (13) and 0.300 (13). The C—O distances involving the disordered atoms were restrained to be equal and these atoms were subjected to a rigid bond restraint. The displacement parameters of atoms C16 and C17 were restrained to an approximate isotropic behaviour. H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 Å (aromatic), 0.97 Å (CH2), 0.98 Å (CH3) and O–H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl). In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Computing details top

Data collection: SMART (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates a hydrogen bond. Only the major disorder component is shown.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along b-axis. Hydrogen bonds are shown as dashed lines. Only the major disorder component is shown.
8-[(3,3-Dimethyloxiran-2-yl)methoxymethyl]-11-hydroxy-2-isopropenyl-5-methyl- 12-oxo-1,2,3,12-tetrahydropyrano[3,2-a]xanthen-1-yl acetate top
Crystal data top
C28H30O8F(000) = 524
Mr = 494.54Dx = 1.277 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9335 reflections
a = 11.3323 (1) Åθ = 1.6–30.4°
b = 8.8199 (2) ŵ = 0.09 mm1
c = 12.8741 (3) ÅT = 293 K
β = 91.765 (1)°Plate, yellow
V = 1286.15 (4) Å30.40 × 0.24 × 0.18 mm
Z = 2
Data collection top
Bruker SMART area-detector
diffractometer
2691 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 30.4°, θmin = 1.6°
ω scansh = 1615
9335 measured reflectionsk = 912
3840 independent reflectionsl = 1817
Refinement top
Refinement on F216 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.2544P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.141(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.20 e Å3
3840 reflectionsΔρmin = 0.27 e Å3
335 parameters
Crystal data top
C28H30O8V = 1286.15 (4) Å3
Mr = 494.54Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.3323 (1) ŵ = 0.09 mm1
b = 8.8199 (2) ÅT = 293 K
c = 12.8741 (3) Å0.40 × 0.24 × 0.18 mm
β = 91.765 (1)°
Data collection top
Bruker SMART area-detector
diffractometer
2691 reflections with I > 2σ(I)
9335 measured reflectionsRint = 0.030
3840 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05616 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
3840 reflectionsΔρmin = 0.27 e Å3
335 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.17752 (18)0.0959 (3)0.89869 (16)0.0466 (6)
O20.77214 (19)0.4077 (3)0.79097 (15)0.0415 (5)
O30.8611 (2)0.0712 (3)0.58879 (16)0.0455 (5)
O40.7032 (2)0.1668 (3)0.45891 (18)0.0542 (7)
H40.75730.11330.48160.081*
O50.6074 (4)0.7709 (4)0.6946 (3)0.0937 (12)
O61.0238 (2)0.1231 (3)0.70433 (16)0.0444 (5)
O71.0451 (2)0.1637 (3)0.53268 (18)0.0592 (7)
O80.4404 (3)0.7222 (4)0.8668 (3)0.0780 (9)
C11.0770 (3)0.0262 (4)0.6941 (2)0.0365 (6)
H11.06480.06380.62300.044*
C21.2093 (3)0.0120 (4)0.7207 (2)0.0435 (7)
H21.23840.07570.68230.052*
C31.2211 (3)0.0264 (5)0.8359 (2)0.0483 (8)
H3A1.17680.11800.84960.058*
H3B1.30330.04540.85440.058*
C41.0734 (3)0.1616 (4)0.8659 (2)0.0380 (7)
C51.0267 (3)0.2659 (4)0.9370 (2)0.0412 (7)
C60.9258 (3)0.3443 (4)0.9087 (2)0.0420 (7)
H60.89460.41480.95400.050*
C6A0.8702 (3)0.3185 (4)0.8119 (2)0.0374 (6)
C71.0181 (2)0.1313 (4)0.7703 (2)0.0336 (6)
C7A0.9106 (3)0.2103 (4)0.7430 (2)0.0341 (6)
C80.6238 (3)0.5019 (4)0.6755 (2)0.0415 (7)
C8A0.7130 (3)0.3972 (4)0.6967 (2)0.0374 (7)
C90.5634 (3)0.4873 (5)0.5797 (3)0.0490 (8)
H90.50370.55630.56320.059*
C100.5881 (3)0.3753 (5)0.5083 (3)0.0502 (9)
H100.54420.36830.44630.060*
C110.6781 (3)0.2743 (4)0.5299 (2)0.0424 (7)
C11A0.7432 (3)0.2835 (4)0.6255 (2)0.0370 (6)
C120.8409 (3)0.1797 (4)0.6476 (2)0.0364 (7)
C130.5943 (3)0.6298 (4)0.7483 (3)0.0468 (8)
H130.64790.62720.80940.056*
C140.4695 (3)0.6246 (5)0.7819 (3)0.0576 (10)
H140.41040.62290.72460.069*
C150.4291 (5)0.5607 (6)0.8791 (4)0.0771 (13)
C160.3022 (6)0.5108 (11)0.8848 (6)0.133 (3)
H16A0.27250.53720.95150.200*
H16B0.29740.40300.87540.200*
H16C0.25580.56040.83120.200*
C170.5144 (7)0.4907 (11)0.9560 (5)0.132 (3)
H17A0.47870.48411.02250.197*
H17B0.58430.55210.96180.197*
H17C0.53510.39090.93300.197*
C180.6673 (8)0.8824 (9)0.7449 (9)0.098 (4)0.694 (16)
H18A0.67140.96990.70070.147*0.694 (16)
H18B0.74580.84810.76260.147*0.694 (16)
H18C0.62750.90870.80710.147*0.694 (16)
C18'0.7012 (12)0.841 (2)0.6681 (17)0.082 (6)0.306 (16)
H18D0.72770.80130.60360.123*0.306 (16)
H18E0.76190.82840.72110.123*0.306 (16)
H18F0.68400.94750.66000.123*0.306 (16)
C191.0135 (3)0.2066 (4)0.6160 (3)0.0502 (8)
C200.9601 (6)0.3577 (6)0.6382 (4)0.1004 (19)
H20A0.97640.38430.70950.151*
H20B0.99340.43290.59380.151*
H20C0.87630.35310.62550.151*
C211.2826 (3)0.1480 (5)0.6893 (3)0.0517 (9)
C221.2410 (4)0.2625 (6)0.6336 (4)0.0888 (16)
H22A1.29080.34150.61570.107*
H22B1.16190.26440.61220.107*
C231.4093 (4)0.1446 (8)0.7237 (4)0.0872 (15)
H23A1.44080.04500.71280.131*
H23B1.41610.16950.79630.131*
H23C1.45260.21710.68440.131*
C241.0876 (3)0.2921 (5)1.0420 (2)0.0574 (10)
H24A1.16620.32901.03220.086*
H24B1.09130.19841.07990.086*
H24C1.04400.36551.08030.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0437 (12)0.0556 (15)0.0402 (11)0.0145 (11)0.0051 (9)0.0011 (10)
O20.0442 (12)0.0433 (13)0.0365 (10)0.0112 (10)0.0044 (9)0.0029 (9)
O30.0512 (12)0.0423 (13)0.0429 (11)0.0013 (11)0.0031 (9)0.0102 (10)
O40.0515 (13)0.0636 (17)0.0469 (12)0.0014 (13)0.0099 (10)0.0169 (12)
O50.163 (4)0.0434 (17)0.0730 (19)0.019 (2)0.031 (2)0.0128 (15)
O60.0558 (13)0.0356 (12)0.0424 (11)0.0041 (11)0.0086 (9)0.0017 (10)
O70.0778 (17)0.0538 (16)0.0467 (13)0.0035 (15)0.0126 (12)0.0099 (12)
O80.081 (2)0.0619 (19)0.091 (2)0.0141 (17)0.0095 (17)0.0240 (17)
C10.0421 (16)0.0315 (15)0.0361 (14)0.0008 (13)0.0043 (12)0.0003 (12)
C20.0423 (16)0.0416 (18)0.0471 (16)0.0062 (15)0.0071 (13)0.0046 (14)
C30.0473 (18)0.051 (2)0.0468 (17)0.0155 (17)0.0012 (14)0.0001 (16)
C40.0396 (15)0.0394 (17)0.0348 (14)0.0059 (14)0.0006 (11)0.0017 (13)
C50.0469 (17)0.0446 (18)0.0318 (14)0.0031 (15)0.0032 (12)0.0016 (13)
C60.0477 (17)0.0451 (18)0.0331 (14)0.0090 (15)0.0003 (12)0.0062 (13)
C6A0.0373 (15)0.0379 (16)0.0370 (14)0.0037 (13)0.0001 (11)0.0001 (13)
C70.0357 (14)0.0329 (15)0.0322 (13)0.0003 (13)0.0020 (11)0.0001 (12)
C7A0.0363 (14)0.0353 (15)0.0306 (13)0.0024 (13)0.0019 (11)0.0001 (11)
C80.0411 (16)0.0392 (18)0.0439 (16)0.0010 (15)0.0031 (13)0.0029 (14)
C8A0.0343 (15)0.0400 (16)0.0378 (15)0.0039 (14)0.0007 (12)0.0030 (13)
C90.0422 (17)0.052 (2)0.0516 (18)0.0034 (17)0.0114 (14)0.0077 (17)
C100.0459 (17)0.061 (2)0.0430 (16)0.0015 (18)0.0148 (13)0.0003 (16)
C110.0354 (15)0.052 (2)0.0400 (15)0.0087 (15)0.0015 (12)0.0021 (15)
C11A0.0337 (14)0.0429 (17)0.0342 (14)0.0046 (14)0.0007 (11)0.0027 (13)
C120.0361 (14)0.0367 (17)0.0363 (14)0.0090 (13)0.0008 (12)0.0013 (13)
C130.0542 (19)0.0408 (18)0.0447 (17)0.0050 (16)0.0106 (14)0.0046 (15)
C140.057 (2)0.056 (2)0.060 (2)0.0177 (19)0.0058 (16)0.0091 (18)
C150.085 (3)0.069 (3)0.079 (3)0.004 (3)0.024 (2)0.012 (2)
C160.117 (4)0.136 (6)0.151 (5)0.031 (4)0.065 (4)0.048 (5)
C170.169 (6)0.134 (6)0.093 (4)0.025 (5)0.026 (4)0.042 (4)
C180.087 (6)0.063 (5)0.144 (9)0.021 (4)0.005 (6)0.013 (5)
C18'0.095 (11)0.060 (9)0.093 (13)0.026 (8)0.020 (9)0.002 (9)
C190.058 (2)0.0392 (19)0.0541 (19)0.0021 (17)0.0097 (16)0.0102 (16)
C200.152 (5)0.057 (3)0.094 (3)0.043 (3)0.033 (3)0.022 (3)
C210.0450 (18)0.057 (2)0.0532 (19)0.0070 (18)0.0084 (14)0.0058 (18)
C220.073 (3)0.074 (3)0.119 (4)0.026 (3)0.003 (3)0.035 (3)
C230.060 (2)0.109 (4)0.093 (3)0.022 (3)0.001 (2)0.000 (3)
C240.064 (2)0.070 (3)0.0380 (16)0.017 (2)0.0119 (15)0.0120 (17)
Geometric parameters (Å, º) top
O1—C41.370 (4)C9—H90.93
O1—C31.444 (4)C10—C111.376 (5)
O2—C8A1.372 (4)C10—H100.93
O2—C6A1.381 (4)C11—C11A1.418 (4)
O3—C121.246 (4)C11A—C121.458 (4)
O4—C111.353 (4)C13—C141.492 (5)
O4—H40.82C13—H130.98
O5—C18'1.287 (11)C14—C151.459 (6)
O5—C181.350 (8)C14—H140.98
O5—C131.434 (5)C15—C171.496 (9)
O6—C191.357 (4)C15—C161.508 (8)
O6—C11.456 (4)C16—H16A0.96
O7—C191.202 (4)C16—H16B0.96
O8—C141.438 (5)C16—H16C0.96
O8—C151.439 (6)C17—H17A0.96
C1—C71.519 (4)C17—H17B0.96
C1—C21.533 (4)C17—H17C0.96
C1—H10.98C18—H18A0.96
C2—C211.520 (5)C18—H18B0.96
C2—C31.523 (4)C18—H18C0.96
C2—H20.98C18'—H18D0.96
C3—H3A0.97C18'—H18E0.96
C3—H3B0.97C18'—H18F0.96
C4—C71.390 (4)C19—C201.495 (6)
C4—C51.412 (4)C20—H20A0.96
C5—C61.376 (4)C20—H20B0.96
C5—C241.516 (4)C20—H20C0.96
C6—C6A1.398 (4)C21—C221.318 (6)
C6—H60.93C21—C231.490 (5)
C6A—C7A1.389 (4)C22—H22A0.93
C7—C7A1.437 (4)C22—H22B0.93
C7A—C121.465 (4)C23—H23A0.96
C8—C8A1.390 (5)C23—H23B0.96
C8—C91.397 (4)C23—H23C0.96
C8—C131.511 (5)C24—H24A0.96
C8A—C11A1.408 (4)C24—H24B0.96
C9—C101.384 (5)C24—H24C0.96
C4—O1—C3116.7 (2)C14—C13—C8112.8 (3)
C8A—O2—C6A120.1 (2)O5—C13—H13109.7
C11—O4—H4109.5C14—C13—H13109.7
C18'—O5—C1850.7 (9)C8—C13—H13109.7
C18'—O5—C13130.2 (9)O8—C14—C1559.5 (3)
C18—O5—C13117.3 (5)O8—C14—C13116.3 (3)
C19—O6—C1116.1 (2)C15—C14—C13125.9 (4)
C14—O8—C1561.0 (3)O8—C14—H14114.5
O6—C1—C7107.6 (2)C15—C14—H14114.5
O6—C1—C2108.1 (3)C13—C14—H14114.5
C7—C1—C2110.6 (2)O8—C15—C1459.5 (3)
O6—C1—H1110.1O8—C15—C17115.1 (6)
C7—C1—H1110.1C14—C15—C17120.9 (5)
C2—C1—H1110.1O8—C15—C16112.5 (5)
C21—C2—C3113.7 (3)C14—C15—C16118.6 (5)
C21—C2—C1114.5 (3)C17—C15—C16116.5 (6)
C3—C2—C1106.9 (2)C15—C16—H16A109.5
C21—C2—H2107.1C15—C16—H16B109.5
C3—C2—H2107.1H16A—C16—H16B109.5
C1—C2—H2107.1C15—C16—H16C109.5
O1—C3—C2111.0 (3)H16A—C16—H16C109.5
O1—C3—H3A109.4H16B—C16—H16C109.5
C2—C3—H3A109.4C15—C17—H17A109.5
O1—C3—H3B109.4C15—C17—H17B109.5
C2—C3—H3B109.4H17A—C17—H17B109.5
H3A—C3—H3B108.0C15—C17—H17C109.5
O1—C4—C7123.5 (3)H17A—C17—H17C109.5
O1—C4—C5114.3 (2)H17B—C17—H17C109.5
C7—C4—C5122.2 (3)O5—C18—H18A109.5
C6—C5—C4118.7 (3)O5—C18—H18B109.5
C6—C5—C24120.8 (3)H18A—C18—H18B109.5
C4—C5—C24120.5 (3)O5—C18—H18C109.5
C5—C6—C6A120.2 (3)H18A—C18—H18C109.5
C5—C6—H6119.9H18B—C18—H18C109.5
C6A—C6—H6119.9O5—C18'—H18D109.5
O2—C6A—C7A123.1 (3)O5—C18'—H18E109.5
O2—C6A—C6114.7 (3)H18D—C18'—H18E109.5
C7A—C6A—C6122.1 (3)O5—C18'—H18F109.5
C4—C7—C7A118.6 (3)H18D—C18'—H18F109.5
C4—C7—C1119.6 (3)H18E—C18'—H18F109.5
C7A—C7—C1121.6 (2)O7—C19—O6123.8 (3)
C6A—C7A—C7118.1 (3)O7—C19—C20125.7 (4)
C6A—C7A—C12118.7 (3)O6—C19—C20110.4 (3)
C7—C7A—C12123.1 (3)C19—C20—H20A109.5
C8A—C8—C9116.4 (3)C19—C20—H20B109.5
C8A—C8—C13123.3 (3)H20A—C20—H20B109.5
C9—C8—C13120.3 (3)C19—C20—H20C109.5
O2—C8A—C8117.5 (3)H20A—C20—H20C109.5
O2—C8A—C11A120.2 (3)H20B—C20—H20C109.5
C8—C8A—C11A122.4 (3)C22—C21—C23120.2 (4)
C10—C9—C8123.3 (3)C22—C21—C2124.1 (3)
C10—C9—H9118.4C23—C21—C2115.7 (4)
C8—C9—H9118.4C21—C22—H22A120.0
C11—C10—C9119.5 (3)C21—C22—H22B120.0
C11—C10—H10120.3H22A—C22—H22B120.0
C9—C10—H10120.3C21—C23—H23A109.5
O4—C11—C10119.2 (3)C21—C23—H23B109.5
O4—C11—C11A120.8 (3)H23A—C23—H23B109.5
C10—C11—C11A120.0 (3)C21—C23—H23C109.5
C8A—C11A—C11118.4 (3)H23A—C23—H23C109.5
C8A—C11A—C12121.2 (2)H23B—C23—H23C109.5
C11—C11A—C12120.4 (3)C5—C24—H24A109.5
O3—C12—C11A121.1 (3)C5—C24—H24B109.5
O3—C12—C7A123.1 (3)H24A—C24—H24B109.5
C11A—C12—C7A115.8 (3)C5—C24—H24C109.5
O5—C13—C14106.2 (3)H24A—C24—H24C109.5
O5—C13—C8108.7 (3)H24B—C24—H24C109.5
C19—O6—C1—C7146.2 (3)C8—C9—C10—C111.7 (6)
C19—O6—C1—C294.3 (3)C9—C10—C11—O4178.8 (3)
O6—C1—C2—C21166.1 (3)C9—C10—C11—C11A1.3 (5)
C7—C1—C2—C2176.3 (3)O2—C8A—C11A—C11178.6 (3)
O6—C1—C2—C367.0 (3)C8—C8A—C11A—C111.5 (4)
C7—C1—C2—C350.6 (3)O2—C8A—C11A—C123.0 (4)
C4—O1—C3—C243.6 (4)C8—C8A—C11A—C12177.0 (3)
C21—C2—C3—O163.2 (4)O4—C11—C11A—C8A179.7 (3)
C1—C2—C3—O164.2 (4)C10—C11—C11A—C8A0.2 (5)
C3—O1—C4—C79.1 (4)O4—C11—C11A—C121.8 (4)
C3—O1—C4—C5171.8 (3)C10—C11—C11A—C12178.3 (3)
O1—C4—C5—C6176.3 (3)C8A—C11A—C12—O3173.7 (3)
C7—C4—C5—C62.8 (5)C11—C11A—C12—O37.9 (4)
O1—C4—C5—C242.9 (5)C8A—C11A—C12—C7A5.3 (4)
C7—C4—C5—C24178.0 (3)C11—C11A—C12—C7A173.2 (3)
C4—C5—C6—C6A1.1 (5)C6A—C7A—C12—O3169.7 (3)
C24—C5—C6—C6A179.7 (3)C7—C7A—C12—O38.9 (5)
C8A—O2—C6A—C7A3.2 (4)C6A—C7A—C12—C11A9.2 (4)
C8A—O2—C6A—C6177.3 (3)C7—C7A—C12—C11A172.2 (3)
C5—C6—C6A—O2177.9 (3)C18'—O5—C13—C14165.3 (14)
C5—C6—C6A—C7A2.6 (5)C18—O5—C13—C14105.2 (7)
O1—C4—C7—C7A178.3 (3)C18'—O5—C13—C873.1 (14)
C5—C4—C7—C7A0.7 (5)C18—O5—C13—C8133.2 (6)
O1—C4—C7—C13.2 (5)C8A—C8—C13—O5121.2 (4)
C5—C4—C7—C1175.8 (3)C9—C8—C13—O556.5 (4)
O6—C1—C7—C498.4 (3)C8A—C8—C13—C14121.2 (3)
C2—C1—C7—C419.5 (4)C9—C8—C13—C1461.1 (4)
O6—C1—C7—C7A86.6 (3)C15—O8—C14—C13117.9 (4)
C2—C1—C7—C7A155.5 (3)O5—C13—C14—O873.3 (4)
O2—C6A—C7A—C7175.9 (3)C8—C13—C14—O8167.7 (3)
C6—C6A—C7A—C74.6 (4)O5—C13—C14—C15143.4 (4)
O2—C6A—C7A—C125.4 (4)C8—C13—C14—C1597.6 (5)
C6—C6A—C7A—C12174.1 (3)C14—O8—C15—C17112.5 (5)
C4—C7—C7A—C6A2.9 (4)C14—O8—C15—C16111.0 (5)
C1—C7—C7A—C6A172.1 (3)C13—C14—C15—O8102.1 (5)
C4—C7—C7A—C12175.7 (3)O8—C14—C15—C17102.7 (6)
C1—C7—C7A—C129.3 (4)C13—C14—C15—C170.6 (8)
C6A—O2—C8A—C8172.6 (3)O8—C14—C15—C16100.6 (6)
C6A—O2—C8A—C11A7.4 (4)C13—C14—C15—C16157.3 (5)
C9—C8—C8A—O2178.9 (3)C1—O6—C19—O70.2 (5)
C13—C8—C8A—O23.3 (5)C1—O6—C19—C20178.8 (4)
C9—C8—C8A—C11A1.1 (5)C3—C2—C21—C22130.7 (4)
C13—C8—C8A—C11A176.6 (3)C1—C2—C21—C227.3 (6)
C8A—C8—C9—C100.4 (5)C3—C2—C21—C2350.6 (4)
C13—C8—C9—C10178.3 (3)C1—C2—C21—C23173.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.822.554 (3)148
C3—H3B···O8i0.972.573.345 (5)137
C9—H9···O4ii0.932.553.434 (4)160
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC28H30O8
Mr494.54
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)11.3323 (1), 8.8199 (2), 12.8741 (3)
β (°) 91.765 (1)
V3)1286.15 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.24 × 0.18
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9335, 3840, 2691
Rint0.030
(sin θ/λ)max1)0.712
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.141, 1.06
No. of reflections3840
No. of parameters335
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.27

Computer programs: SMART (Bruker, 2006), SAINT-Plus (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.822.554 (3)148
C3—H3B···O8i0.972.573.345 (5)137
C9—H9···O4ii0.932.553.434 (4)160
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y+1/2, z+1.
 

Acknowledgements

The authors thank the Thailand Research Fund (grant No. DBG5080017) and the Higher Education Commission Grants for Graduate Dissertation for financial support. The Department of Chemistry, Faculty of Science, Chulalongkorn University, the Rachadapiseksompoj Endowment, Chulalongkorn University, the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, and the A1-B1 project, Faculty of Science, Chulalongkorn University, are also gratefully acknowledged.

References

First citationBringmann, G., Lang, G., Steffens, S., Gunther, E. & Schaumann, K. (2003). Phytochemistry, 63, 437–443.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2006). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFukuyama, K., Hamada, K., Tsukihara, T. & Katsube, Y. (1978). Bull. Chem. Soc. Jpn, 51,37–44.  CrossRef CAS Web of Science Google Scholar
First citationLee, B. W., Gai, S. W., Park, K. M. & Park, K. H. (2005). J. Nat. Prod. 68, 456–458.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPornpakakul, S., Liangsakul, J., Ngamrojanavanich, N., Roengsumran, S., Sihanonth, P., Piapukiew, J., Sangvichien, E., Puthong, S. & Petsom, A. (2006). Arch. Pharm. Res. 29, 140–144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRaper, K. B. & Fennel, D. I. (1965). The Genus Aspergillus. Baltimore: The Williams and Wilkins Company.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2558-o2559
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds