organic compounds
3,3′-Diethyl-1,1′-[anthracene-9,10-diylbis(oxyethylene)]diimidazolium diiodide
aSchool of Materials Science and Engineering, Tianjin Polytechnic University, No. 63 Chenglin Road, Tianjin 300160, People's Republic of China
*Correspondence e-mail: houyh1977@163.com
In the title centrosymmetric compound, C28H32N4O22+ 2I−, the two midazole rings are approximately perpendicular to the central anthracene ring system [dihedral angle = 86.6 (2)°]. The ionic units are linked into a two-dimensional network parallel to (01) by C—H⋯I hydrogen bonds and π–π interactions involving the anthracene ring system and imidazole rings [centroid–centroid distance = 3.717 (3) Å].
Related literature
For general background to N-heterocyclic and their transition metal complexes, see: Bourissou et al. (2000); Herrmann & Kocher (1997); Cavell & McGuinness (2004); Baker et al. (2004); Melaiye et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809038379/ci2907sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809038379/ci2907Isup2.hkl
A mixture of 1,2-bis(2-chloroethoxy)anthracene (6.7 g, 20 mmol) and 1-ethylimidazole (4.22 g, 44 mmol) was refluxed in THF (100 ml) for 24 h, giving a pale yellow precipitate, which was filtered and washed with THF and recrystallized from methanol and ethyl ether. The obtained solid was dissolved in methanol (200 ml) and an aqueous solution of NH4I (4.64 g, 32 mmol) was added to the solution. The precipitate formed was collected by filtration and recrystallized from CH3CN and diethyl ether (1:6 v/v) to give the title compound (yield 95%). Analysis found: C 32.49, H 3.22, N 5.36%; calculated for C28H32N4O2I2: C 32.64, H 3.13, N, 5.44%. 1H NMR (300 M, d6-DMSO): δ 9.51 (s, 2 H), 8.03 (s, 2 H), 7.97 (s, 2 H), 7.89–7.86 (m, 4 H), 7.55–7.51 (m, 4 H), 4.85 (t, J = 4.5 Hz, 4 H), 4.49 (t, J = 4.3 Hz, 4 H), 4.35 (q, J = 7.4 Hz, 4 H), 1.51 (t, J = 7.3 Hz, 6 H) p.p.m..
H atoms were placed in calculated positions [C-H = 0.93 (aromatic) or 0.97 Å (methylene)] and included in the final cycles of
using a riding-model approximation, with Uiso(H) = 1.2Ueq(carrier atom).Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C28H32N4O22+·2I− | F(000) = 700 |
Mr = 710.38 | Dx = 1.588 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5650 reflections |
a = 11.4733 (13) Å | θ = 0.9–28.4° |
b = 10.6692 (12) Å | µ = 2.15 mm−1 |
c = 13.1553 (15) Å | T = 298 K |
β = 112.725 (2)° | Block, colourless |
V = 1485.3 (3) Å3 | 0.24 × 0.22 × 0.22 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 2603 independent reflections |
Radiation source: fine-focus sealed tube | 1989 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→13 |
Tmin = 0.627, Tmax = 0.650 | k = −12→11 |
8914 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0505P)2] where P = (Fo2 + 2Fc2)/3 |
2603 reflections | (Δ/σ)max = 0.001 |
163 parameters | Δρmax = 0.81 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C28H32N4O22+·2I− | V = 1485.3 (3) Å3 |
Mr = 710.38 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.4733 (13) Å | µ = 2.15 mm−1 |
b = 10.6692 (12) Å | T = 298 K |
c = 13.1553 (15) Å | 0.24 × 0.22 × 0.22 mm |
β = 112.725 (2)° |
Bruker SMART CCD area-detector diffractometer | 2603 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1989 reflections with I > 2σ(I) |
Tmin = 0.627, Tmax = 0.650 | Rint = 0.035 |
8914 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.81 e Å−3 |
2603 reflections | Δρmin = −0.27 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.42215 (3) | 0.07079 (3) | 0.19395 (3) | 0.06624 (18) | |
O1 | 0.6771 (3) | 0.6579 (3) | 0.1484 (2) | 0.0520 (8) | |
N1 | 0.6819 (4) | 0.7779 (4) | 0.4677 (3) | 0.0628 (11) | |
N2 | 0.7451 (3) | 0.8096 (3) | 0.3355 (3) | 0.0503 (9) | |
C1 | 0.5148 (7) | 0.6942 (7) | 0.5210 (6) | 0.115 (2) | |
H1A | 0.4719 | 0.7075 | 0.5699 | 0.172* | |
H1B | 0.5544 | 0.6132 | 0.5349 | 0.172* | |
H1C | 0.4550 | 0.6981 | 0.4461 | 0.172* | |
C2 | 0.6093 (6) | 0.7894 (7) | 0.5390 (5) | 0.100 (2) | |
H2A | 0.6677 | 0.7860 | 0.6155 | 0.120* | |
H2B | 0.5684 | 0.8708 | 0.5266 | 0.120* | |
C3 | 0.6648 (5) | 0.8459 (5) | 0.3797 (4) | 0.0603 (13) | |
H3A | 0.6055 | 0.9096 | 0.3527 | 0.072* | |
C4 | 0.7780 (5) | 0.6961 (5) | 0.4802 (4) | 0.0723 (16) | |
H4A | 0.8107 | 0.6375 | 0.5365 | 0.087* | |
C5 | 0.8164 (5) | 0.7143 (5) | 0.3988 (4) | 0.0651 (14) | |
H5A | 0.8800 | 0.6705 | 0.3868 | 0.078* | |
C6 | 0.7488 (5) | 0.8552 (5) | 0.2318 (4) | 0.0637 (13) | |
H6A | 0.8315 | 0.8392 | 0.2307 | 0.076* | |
H6B | 0.7342 | 0.9449 | 0.2258 | 0.076* | |
C7 | 0.6479 (4) | 0.7891 (4) | 0.1346 (3) | 0.0577 (12) | |
H7A | 0.5646 | 0.8048 | 0.1345 | 0.069* | |
H7B | 0.6497 | 0.8189 | 0.0656 | 0.069* | |
C8 | 0.5860 (4) | 0.5813 (4) | 0.0729 (3) | 0.0443 (10) | |
C9 | 0.4887 (4) | 0.5346 (4) | 0.0997 (3) | 0.0432 (10) | |
C10 | 0.4733 (5) | 0.5667 (4) | 0.1992 (4) | 0.0534 (12) | |
H10A | 0.5310 | 0.6204 | 0.2495 | 0.064* | |
C11 | 0.3758 (5) | 0.5200 (5) | 0.2213 (4) | 0.0642 (13) | |
H11A | 0.3676 | 0.5417 | 0.2867 | 0.077* | |
C12 | 0.2873 (5) | 0.4392 (5) | 0.1468 (4) | 0.0655 (14) | |
H12A | 0.2205 | 0.4083 | 0.1628 | 0.079* | |
C13 | 0.2987 (5) | 0.4058 (4) | 0.0511 (4) | 0.0557 (12) | |
H13A | 0.2396 | 0.3517 | 0.0027 | 0.067* | |
C14 | 0.6018 (4) | 0.5485 (4) | −0.0243 (3) | 0.0426 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0748 (3) | 0.0667 (3) | 0.0669 (2) | 0.00388 (17) | 0.0379 (2) | 0.00174 (16) |
O1 | 0.0521 (18) | 0.0522 (19) | 0.0433 (16) | −0.0023 (14) | 0.0090 (14) | −0.0128 (14) |
N1 | 0.073 (3) | 0.064 (3) | 0.048 (2) | −0.011 (2) | 0.020 (2) | −0.013 (2) |
N2 | 0.051 (2) | 0.052 (2) | 0.0430 (19) | −0.0073 (18) | 0.0127 (18) | −0.0170 (17) |
C1 | 0.124 (6) | 0.129 (7) | 0.115 (5) | −0.023 (5) | 0.072 (5) | −0.023 (5) |
C2 | 0.128 (6) | 0.118 (5) | 0.076 (4) | −0.036 (4) | 0.064 (4) | −0.031 (4) |
C3 | 0.066 (3) | 0.056 (3) | 0.056 (3) | 0.003 (2) | 0.020 (3) | −0.012 (2) |
C4 | 0.081 (4) | 0.067 (4) | 0.047 (3) | 0.002 (3) | 0.001 (3) | 0.005 (3) |
C5 | 0.059 (3) | 0.067 (3) | 0.055 (3) | 0.009 (3) | 0.008 (3) | −0.013 (3) |
C6 | 0.081 (4) | 0.060 (3) | 0.050 (3) | −0.019 (3) | 0.025 (2) | −0.011 (2) |
C7 | 0.072 (3) | 0.050 (3) | 0.045 (2) | −0.005 (2) | 0.016 (2) | −0.007 (2) |
C8 | 0.044 (3) | 0.045 (2) | 0.039 (2) | 0.005 (2) | 0.0102 (19) | −0.0063 (19) |
C9 | 0.049 (3) | 0.043 (2) | 0.034 (2) | 0.012 (2) | 0.0113 (19) | −0.0012 (17) |
C10 | 0.061 (3) | 0.055 (3) | 0.043 (2) | 0.002 (2) | 0.018 (2) | −0.007 (2) |
C11 | 0.085 (4) | 0.069 (3) | 0.050 (3) | 0.004 (3) | 0.039 (3) | −0.007 (2) |
C12 | 0.067 (3) | 0.071 (4) | 0.069 (3) | 0.003 (3) | 0.037 (3) | −0.005 (3) |
C13 | 0.057 (3) | 0.052 (3) | 0.057 (3) | −0.001 (2) | 0.021 (2) | −0.007 (2) |
C14 | 0.043 (2) | 0.040 (2) | 0.041 (2) | 0.0060 (19) | 0.0121 (19) | −0.0009 (18) |
O1—C8 | 1.395 (5) | C6—H6A | 0.97 |
O1—C7 | 1.434 (5) | C6—H6B | 0.97 |
N1—C3 | 1.315 (6) | C7—H7A | 0.97 |
N1—C4 | 1.365 (6) | C7—H7B | 0.97 |
N1—C2 | 1.482 (7) | C8—C9 | 1.387 (6) |
N2—C3 | 1.323 (6) | C8—C14 | 1.402 (6) |
N2—C5 | 1.368 (6) | C9—C10 | 1.428 (6) |
N2—C6 | 1.464 (6) | C9—C14i | 1.432 (5) |
C1—C2 | 1.437 (8) | C10—C11 | 1.355 (7) |
C1—H1A | 0.96 | C10—H10A | 0.93 |
C1—H1B | 0.96 | C11—C12 | 1.402 (7) |
C1—H1C | 0.96 | C11—H11A | 0.93 |
C2—H2A | 0.97 | C12—C13 | 1.363 (7) |
C2—H2B | 0.97 | C12—H12A | 0.93 |
C3—H3A | 0.93 | C13—C14i | 1.407 (7) |
C4—C5 | 1.321 (7) | C13—H13A | 0.93 |
C4—H4A | 0.93 | C14—C13i | 1.407 (7) |
C5—H5A | 0.93 | C14—C9i | 1.432 (5) |
C6—C7 | 1.525 (6) | ||
C8—O1—C7 | 114.0 (3) | N2—C6—H6B | 109.7 |
C3—N1—C4 | 107.4 (5) | C7—C6—H6B | 109.7 |
C3—N1—C2 | 125.7 (5) | H6A—C6—H6B | 108.2 |
C4—N1—C2 | 127.0 (5) | O1—C7—C6 | 106.3 (4) |
C3—N2—C5 | 107.7 (4) | O1—C7—H7A | 110.5 |
C3—N2—C6 | 126.0 (4) | C6—C7—H7A | 110.5 |
C5—N2—C6 | 126.0 (4) | O1—C7—H7B | 110.5 |
C2—C1—H1A | 109.5 | C6—C7—H7B | 110.5 |
C2—C1—H1B | 109.5 | H7A—C7—H7B | 108.7 |
H1A—C1—H1B | 109.5 | C9—C8—O1 | 119.0 (4) |
C2—C1—H1C | 109.5 | C9—C8—C14 | 122.8 (4) |
H1A—C1—H1C | 109.5 | O1—C8—C14 | 118.0 (4) |
H1B—C1—H1C | 109.5 | C8—C9—C10 | 122.9 (4) |
C1—C2—N1 | 114.2 (5) | C8—C9—C14i | 119.0 (4) |
C1—C2—H2A | 108.7 | C10—C9—C14i | 118.1 (4) |
N1—C2—H2A | 108.7 | C11—C10—C9 | 120.8 (4) |
C1—C2—H2B | 108.7 | C11—C10—H10A | 119.6 |
N1—C2—H2B | 108.7 | C9—C10—H10A | 119.6 |
H2A—C2—H2B | 107.6 | C10—C11—C12 | 120.8 (5) |
N1—C3—N2 | 109.5 (4) | C10—C11—H11A | 119.6 |
N1—C3—H3A | 125.3 | C12—C11—H11A | 119.6 |
N2—C3—H3A | 125.3 | C13—C12—C11 | 120.3 (5) |
C5—C4—N1 | 108.3 (5) | C13—C12—H12A | 119.9 |
C5—C4—H4A | 125.8 | C11—C12—H12A | 119.9 |
N1—C4—H4A | 125.8 | C12—C13—C14i | 121.2 (4) |
C4—C5—N2 | 107.1 (5) | C12—C13—H13A | 119.4 |
C4—C5—H5A | 126.4 | C14i—C13—H13A | 119.4 |
N2—C5—H5A | 126.4 | C8—C14—C13i | 123.0 (4) |
N2—C6—C7 | 110.0 (4) | C8—C14—C9i | 118.2 (4) |
N2—C6—H6A | 109.7 | C13i—C14—C9i | 118.8 (4) |
C7—C6—H6A | 109.7 | ||
C3—N1—C2—C1 | 102.4 (7) | C7—O1—C8—C9 | −91.0 (5) |
C4—N1—C2—C1 | −77.6 (7) | C7—O1—C8—C14 | 93.1 (4) |
C4—N1—C3—N2 | 0.6 (5) | O1—C8—C9—C10 | 3.5 (6) |
C2—N1—C3—N2 | −179.3 (4) | C14—C8—C9—C10 | 179.2 (4) |
C5—N2—C3—N1 | −0.1 (5) | O1—C8—C9—C14i | −177.3 (3) |
C6—N2—C3—N1 | 174.7 (4) | C14—C8—C9—C14i | −1.6 (7) |
C3—N1—C4—C5 | −0.9 (6) | C8—C9—C10—C11 | 179.1 (4) |
C2—N1—C4—C5 | 179.0 (5) | C14i—C9—C10—C11 | −0.1 (6) |
N1—C4—C5—N2 | 0.8 (6) | C9—C10—C11—C12 | −0.2 (8) |
C3—N2—C5—C4 | −0.5 (5) | C10—C11—C12—C13 | 0.5 (8) |
C6—N2—C5—C4 | −175.2 (4) | C11—C12—C13—C14i | −0.4 (7) |
C3—N2—C6—C7 | −80.2 (6) | C9—C8—C14—C13i | −179.1 (4) |
C5—N2—C6—C7 | 93.6 (5) | O1—C8—C14—C13i | −3.3 (6) |
C8—O1—C7—C6 | 173.3 (4) | C9—C8—C14—C9i | 1.6 (6) |
N2—C6—C7—O1 | −60.2 (5) | O1—C8—C14—C9i | 177.3 (3) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···I1ii | 0.93 | 2.89 | 3.771 (5) | 159 |
C4—H4A···I1iii | 0.93 | 2.97 | 3.893 (5) | 172 |
C5—H5A···I1iv | 0.93 | 3.05 | 3.957 (6) | 167 |
Symmetry codes: (ii) x, y+1, z; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+3/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C28H32N4O22+·2I− |
Mr | 710.38 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 11.4733 (13), 10.6692 (12), 13.1553 (15) |
β (°) | 112.725 (2) |
V (Å3) | 1485.3 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.15 |
Crystal size (mm) | 0.24 × 0.22 × 0.22 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.627, 0.650 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8914, 2603, 1989 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.102, 1.07 |
No. of reflections | 2603 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.81, −0.27 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···I1i | 0.93 | 2.89 | 3.771 (5) | 159 |
C4—H4A···I1ii | 0.93 | 2.97 | 3.893 (5) | 172 |
C5—H5A···I1iii | 0.93 | 3.05 | 3.957 (6) | 167 |
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+3/2, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by the Startup Fund for PhDs of Natural Scientific Research of Tianjin Polytechnic University (grant No. 029312).
References
Baker, M. V., Brown, D. H., Haque, R. A., Skelton, B. W. & White, A. H. (2004). J. Chem. Soc. Dalton Trans. pp. 3756–3764. CrossRef Google Scholar
Bourissou, D., Guerret, O., Gabbai, F. P. & Bertrand, G. (2000). Chem. Rev. 100, 39–91. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cavell, K. J. & McGuinness, D. S. (2004). Coord. Chem. Rev. pp. 248–671. Google Scholar
Herrmann, W. A. & Kocher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162–2187. CrossRef CAS Web of Science Google Scholar
Melaiye, A., Simons, R. S., Milsted, A., Pingitore, F., Wesdemiotis, C., Tessier, C. A. & Youngs, W. J. (2004). J. Med. Chem. 47, 973–977. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As ancillary ligands, N-heterocyclic carbenes (NHCs) have received considerable attention due to their strong σ-donor ability, and are attractive alternatives to the widely utilized phosphine ligands in metal coordination chemistry (Bourissou et al., 2000; Herrmann & Kocher, 1997). A number of N-heterocyclic carbene transition metal complexes have been synthesized and isolated, and some of them have been successfully applied as homogeneous catalysts (Cavell & McGuinness, 2004; Baker et al., 2004; Melaiye et al., 2004). Herein, the synthesis and crystal structure of a new biscarbene analogue, (I), is reported.
The asymmetric unit contains one-half of the cation and a iodide anion. The cation of (I) lies across a crystallographic inversion centre (Fig. 1). The two imidazole ring planes are approximately perpendicular to the central anthracene ring system, the dihedral angle between them being 86.6 (2)°.
In the crystal, the ionic units are linked via C—H···I interactions. In addition, the anthracene ring system and imidazole rings of two adjacent molecules are stacked, with a centroid-to-centroid separation of 3.717 (3) Å indicating weak π-π interactions. The C—H···I and π-π interactions link ionic units into a two-dimensional network parallel to the (101) [Fig.2].