organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2532-o2533

(2E)-1-(4-Amino­phen­yl)-3-(2-thien­yl)prop-2-en-1-one ethanol hemisolvate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 11 September 2009; accepted 19 September 2009; online 26 September 2009)

In the title compound, C13H11NOS·0.5C2H6O, the chalcone derivative is close to planar, the dihedral angle between the thio­phene and 4-amino­phenyl rings being 3.1 (2)°. The thio­phene ring is disordered over two orientations with occupancies of 0.842 (3) and 0.158 (3). In the crystal structure, mol­ecules are linked into chains along the b axis by N—H⋯O hydrogen bonds. The chains are crosslinked via N—H⋯π inter­actions involving the thio­phene ring. The ethanol solvent mol­ecule is also disordered over two positions, each with an occupancy of 0.25.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Fun et al. (2009[Fun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2009). Acta Cryst. E65, o2168-o2169.]); Suwunwong et al. (2009[Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575-o1576.]). For background and applications of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Go et al. (2005[Go, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483-499.]); Ni et al. (2004[Ni, L., Meng, C. Q. & Sikorski, J. A. (2004). Expert Opin. Ther. Pat. 14, 1669-1691.]); Patil & Dharmaprakash (2008[Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451-453.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NOS·0.5C2H6O

  • Mr = 252.32

  • Orthorhombic, P 21 21 21

  • a = 5.1413 (1) Å

  • b = 13.9754 (2) Å

  • c = 18.2647 (2) Å

  • V = 1312.35 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.56 × 0.22 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.879, Tmax = 0.961

  • 22258 measured reflections

  • 4225 independent reflections

  • 3893 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.205

  • S = 1.09

  • 4225 reflections

  • 188 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1874 Friedel pairs

  • Flack parameter: 0.00 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.16 2.931 (3) 149
N1—H1BCg1ii 0.86 2.80 3.597 (3) 156
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]. Cg1 is the centroid of the S1/C10–C13 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones have been reported to be responsible for a variety of biological activities such as analgesic, anti-inflammatory, antibacterial and antimycotic properties (Dimmock et al., 1999; Go et al., 2005; Ni et al., 2004). Some of the synthetic chalcones have also been found to be non-linear optical (NLO) materials (Patil & Dharmaprakash, 2008). These interesting activities have led us to synthesize the title heteroaryl chalcone, (I), in order to study its NLO properties and biological activities. Herein we report the crystal strcuture of (I). The title compound crystallizes in orthorhombic noncentrosymmetric space group P212121 and therefore it is expected to exhibit second-order non-linear optic properties.

The molecule of the title heteroaryl chalcone (Fig. 1) exists in an E configuration with respect to the C8C9 double bond [1.346 (3) Å], with C7—C8—C9—C10 torsion angle of 179.1 (2)°. The molecule is essentially planar as indicated by the dihedral angle between thiophene (C10–C13/S1) and 4-aminophenyl rings of 3.1 (2)°. Bond distances (Allen et al., 1987) and angles show normal values and are comparable with those observed in closely related structures (Fun et al., 2009; Suwunwong et al., 2009).

In the crystal, molecules are linked into chains along the b axis through N—H···O hydrogen bonds (Fig. 2 and Table 1). The chains are interlinked via N—H···π interactions (Table 1) involving the C10-C13/S1 ring (Fig.2).

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2009); Suwunwong et al. (2009). For background and applications of chalcones, see: Dimmock et al. (1999); Go et al. (2005); Ni et al. (2004); Patil & Dharmaprakash (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by the condensation of 4-aminoacetophenone (0.40 g, 3 mmol) with thiophene-2-carboxaldehyde (0.28 ml, 3 mmol) in ethanol (30 ml) in the presence of 10% NaOH (aq) (5 ml). After stirring for 2 hr at room temperature, the resulting yellow solid was collected by filtration, washed with distilled water, dried and purified by repeated recrystallization from acetone. Yellow plate-shaped single crystals of the title compound suitable for X-ray structure determination were grown by slow evaporation of an ethanol solution at room temperature after several days, (m.p. 378–379 K).

Refinement top

The thiophene ring of the chalcone is disordered over two orientations with occupancies of 0.842 (3) and 0.158 (3). The same anisotropic displacement parameters were used for atoms pairs C12A/C11, C11A/C12 and C13A/C13. Atoms S1A, C11A, C12A, C13A and C10 were restrained to be coplanar. The ethanol solvent molecule is also disordered over two positions across a center of symmetry. Their occupanicies were initially refined to 0.248 (5) and 0.242 (5) and later both were fixed at 0.25. Both disorder components were refined isotropically. The C—O, C—C and O···C distances were restrained to 1.42 (1), 1.51 (1) and 2.43 (1) Å, respectively. All H atoms were placed in calculated positions, with N-H = 0.86 Å, C-H = 0.93-0.97 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl and hydroxyl H atoms and 1.2Ueq(C) for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.96 Å from H2B and the deepest hole is located at 0.30 Å from H14B. The final difference density features indicate that the solvent molecule may be disordered over multiple sites.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The minor disorder components are shown in open bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing chains running along the b axis. N—H···O hydrogen bonds and N—H···π interactions are shown as dashed lines. Only the major disorder component is shown. For clarity, the disordered ethanol solvent molecules are not shown.
(2E)-1-(4-Aminophenyl)-3-(2-thienyl)prop-2-en-1-one ethanol hemisolvate top
Crystal data top
C13H11NOS·0.5C2H6ODx = 1.277 Mg m3
Mr = 252.32Melting point = 378–379 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4225 reflections
a = 5.1413 (1) Åθ = 1.8–31.1°
b = 13.9754 (2) ŵ = 0.24 mm1
c = 18.2647 (2) ÅT = 100 K
V = 1312.35 (3) Å3Plate, yellow
Z = 40.56 × 0.22 × 0.17 mm
F(000) = 532
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4225 independent reflections
Radiation source: sealed tube3893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 31.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.879, Tmax = 0.961k = 2015
22258 measured reflectionsl = 2624
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.205 w = 1/[σ2(Fo2) + (0.1552P)2 + 0.2319P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4225 reflectionsΔρmax = 1.04 e Å3
188 parametersΔρmin = 0.31 e Å3
14 restraintsAbsolute structure: Flack (1983), 1874 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (12)
Crystal data top
C13H11NOS·0.5C2H6OV = 1312.35 (3) Å3
Mr = 252.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1413 (1) ŵ = 0.24 mm1
b = 13.9754 (2) ÅT = 100 K
c = 18.2647 (2) Å0.56 × 0.22 × 0.17 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4225 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3893 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.961Rint = 0.026
22258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.205Δρmax = 1.04 e Å3
S = 1.09Δρmin = 0.31 e Å3
4225 reflectionsAbsolute structure: Flack (1983), 1874 Friedel pairs
188 parametersAbsolute structure parameter: 0.00 (12)
14 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4331 (4)0.19026 (12)0.23694 (11)0.0354 (4)
N10.3267 (4)0.13702 (15)0.34900 (11)0.0303 (4)
H1A0.33110.19710.33900.036*
H1B0.43250.11350.38070.036*
C10.0494 (4)0.07627 (15)0.29945 (11)0.0260 (4)
H10.05680.14080.31160.031*
C20.1363 (4)0.01898 (16)0.33217 (11)0.0257 (4)
H20.25120.04530.36590.031*
C30.1526 (4)0.07911 (15)0.31464 (11)0.0249 (4)
C40.0225 (5)0.11577 (16)0.26252 (12)0.0296 (4)
H40.01350.18000.24950.035*
C50.2078 (4)0.05764 (16)0.23027 (13)0.0284 (4)
H50.32140.08350.19600.034*
C60.2273 (4)0.03956 (15)0.24835 (10)0.0232 (4)
C70.4185 (4)0.10551 (15)0.21554 (11)0.0244 (4)
C80.5911 (4)0.07082 (15)0.15699 (12)0.0256 (4)
H80.57330.00820.14050.031*
C90.7742 (4)0.12715 (15)0.12666 (11)0.0251 (4)
H90.78670.18970.14360.030*
C100.9527 (4)0.09779 (15)0.06978 (11)0.0241 (4)
S10.95430 (16)0.01724 (6)0.03611 (4)0.0312 (2)0.842 (3)
C111.2101 (13)0.0077 (4)0.0214 (2)0.0304 (8)0.842 (3)
H111.28480.03680.05290.037*0.842 (3)
C121.2907 (12)0.1014 (4)0.0157 (4)0.0293 (6)0.842 (3)
H121.42680.12770.04250.035*0.842 (3)
C131.1404 (12)0.1509 (4)0.0372 (4)0.0291 (11)0.842 (3)
H131.16940.21500.04810.035*0.842 (3)
S1A1.1592 (16)0.1790 (5)0.0320 (5)0.0257 (13)0.158 (3)
C11A1.312 (7)0.095 (2)0.020 (2)0.0293 (6)0.16
H11A1.44320.10780.05360.035*0.158 (3)
C12A1.208 (7)0.006 (2)0.0088 (18)0.0304 (8)0.16
H12A1.25130.04960.03410.037*0.158 (3)
C13A1.005 (4)0.0026 (14)0.0424 (12)0.0291 (11)0.16
H13A0.92940.05170.06280.035*0.158 (3)
O20.2058 (19)0.2501 (8)0.4350 (6)0.060 (3)*0.25
H2B0.34100.23680.45650.089*0.25
C140.013 (2)0.2424 (15)0.4817 (8)0.070 (4)*0.25
H14A0.00160.29510.51610.084*0.25
H14B0.00120.18320.50930.084*0.25
C150.272 (2)0.2486 (12)0.4437 (9)0.058 (3)*0.25
H15A0.39700.27930.47480.087*0.25
H15B0.32900.18480.43280.087*0.25
H15C0.25480.28420.39900.087*0.25
O2A0.333 (2)0.2650 (10)0.4138 (7)0.075 (3)*0.25
H2AA0.35210.25360.37000.113*0.25
C14A0.059 (3)0.2529 (15)0.4304 (7)0.070 (4)*0.25
H14C0.02540.28590.39090.084*0.25
H14D0.05260.18700.41580.084*0.25
C15A0.012 (3)0.2491 (14)0.5119 (7)0.064 (4)*0.25
H15G0.17030.24130.52180.096*0.25
H15D0.07200.30780.53330.096*0.25
H15E0.10650.19630.53240.096*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0388 (9)0.0271 (7)0.0402 (9)0.0006 (7)0.0127 (8)0.0014 (6)
N10.0301 (9)0.0343 (9)0.0266 (8)0.0049 (7)0.0037 (7)0.0008 (7)
C10.0271 (9)0.0298 (9)0.0211 (8)0.0024 (8)0.0010 (7)0.0000 (7)
C20.0262 (8)0.0299 (9)0.0210 (8)0.0017 (8)0.0025 (7)0.0004 (7)
C30.0232 (8)0.0309 (9)0.0207 (8)0.0009 (7)0.0029 (7)0.0030 (7)
C40.0300 (10)0.0293 (9)0.0295 (10)0.0002 (8)0.0042 (8)0.0015 (8)
C50.0260 (9)0.0317 (10)0.0275 (9)0.0011 (8)0.0057 (8)0.0003 (8)
C60.0227 (8)0.0274 (9)0.0194 (8)0.0032 (7)0.0006 (6)0.0045 (6)
C70.0228 (9)0.0271 (8)0.0234 (9)0.0036 (7)0.0010 (7)0.0033 (7)
C80.0233 (9)0.0317 (9)0.0217 (8)0.0027 (7)0.0019 (7)0.0016 (7)
C90.0221 (8)0.0294 (9)0.0237 (9)0.0041 (7)0.0008 (7)0.0007 (7)
C100.0209 (8)0.0298 (8)0.0216 (8)0.0026 (7)0.0017 (7)0.0006 (7)
S10.0333 (4)0.0323 (4)0.0279 (3)0.0023 (3)0.0062 (3)0.0037 (3)
C110.0314 (11)0.0398 (12)0.020 (2)0.0038 (9)0.0043 (14)0.0031 (14)
C120.0222 (15)0.0416 (14)0.0243 (13)0.0012 (10)0.0021 (10)0.0018 (10)
C130.0248 (16)0.033 (2)0.0298 (17)0.0007 (17)0.0037 (12)0.0028 (19)
S1A0.0227 (19)0.031 (3)0.023 (2)0.003 (2)0.0025 (15)0.003 (2)
C11A0.0222 (15)0.0416 (14)0.0243 (13)0.0012 (10)0.0021 (10)0.0018 (10)
C12A0.0314 (11)0.0398 (12)0.020 (2)0.0038 (9)0.0043 (14)0.0031 (14)
C13A0.0248 (16)0.033 (2)0.0298 (17)0.0007 (17)0.0037 (12)0.0028 (19)
Geometric parameters (Å, º) top
O1—C71.250 (3)C11—H110.93
N1—C31.360 (3)C12—C131.418 (8)
N1—H1A0.86C12—H120.93
N1—H1B0.86C13—H130.93
C1—C21.382 (3)S1A—C11A1.70 (2)
C1—C61.404 (3)C11A—C12A1.373 (17)
C1—H10.93C11A—H11A0.93
C2—C31.410 (3)C12A—C13A1.40 (2)
C2—H20.93C12A—H12A0.93
C3—C41.407 (3)C13A—H13A0.93
C4—C51.384 (3)O2—C141.416 (9)
C4—H40.93O2—H2B0.82
C5—C61.402 (3)C14—C151.504 (10)
C5—H50.93C14—H14A0.97
C6—C71.475 (3)C14—H14B0.97
C7—C81.472 (3)C15—H15A0.96
C8—C91.346 (3)C15—H15B0.96
C8—H80.93C15—H15C0.96
C9—C101.446 (3)O2A—C14A1.449 (9)
C9—H90.93O2A—H2AA0.82
C10—C131.355 (6)C14A—C15A1.509 (9)
C10—C13A1.45 (2)C14A—H14C0.96
C10—S1A1.701 (8)C14A—H14D0.96
C10—S11.721 (2)C15A—H15G0.96
S1—C111.719 (5)C15A—H15D0.96
C11—C121.377 (5)C15A—H15E0.96
C3—N1—H1A120.0C11—C12—H12124.2
C3—N1—H1B120.0C13—C12—H12125.2
H1A—N1—H1B120.0C10—C13—C12114.8 (5)
C2—C1—C6121.7 (2)C10—C13—H13123.3
C2—C1—H1119.1C12—C13—H13121.9
C6—C1—H1119.1C11A—S1A—C1093.1 (12)
C1—C2—C3120.41 (19)C12A—C11A—S1A111 (2)
C1—C2—H2119.8C12A—C11A—H11A123.4
C3—C2—H2119.8S1A—C11A—H11A125.1
N1—C3—C4121.1 (2)C11A—C12A—H12A126.4
N1—C3—C2120.8 (2)C13A—C12A—H12A118.7
C4—C3—C2118.0 (2)C12A—C13A—C10109.7 (16)
C5—C4—C3121.0 (2)C12A—C13A—H13A127.1
C5—C4—H4119.5C10—C13A—H13A122.4
C3—C4—H4119.5C14—O2—H2B111.5
C4—C5—C6121.2 (2)O2—C14—C15114.9 (10)
C4—C5—H5119.4O2—C14—H14A106.6
C6—C5—H5119.4C15—C14—H14A108.0
C5—C6—C1117.7 (2)O2—C14—H14B109.2
C5—C6—C7123.89 (19)C15—C14—H14B110.1
C1—C6—C7118.42 (19)H14A—C14—H14B107.9
O1—C7—C8120.21 (19)C14—C15—H15A110.2
O1—C7—C6120.36 (19)C14—C15—H15B108.2
C8—C7—C6119.43 (18)H15A—C15—H15B109.5
C9—C8—C7121.9 (2)C14—C15—H15C109.9
C9—C8—H8119.1H15A—C15—H15C109.5
C7—C8—H8119.1H15B—C15—H15C109.5
C8—C9—C10125.0 (2)C14A—O2A—H2AA107.3
C8—C9—H9117.5O2A—C14A—C15A111.5 (9)
C10—C9—H9117.5O2A—C14A—H14C103.1
C13—C10—C9127.7 (3)C15A—C14A—H14C133.2
C13A—C10—C9128.8 (8)O2A—C14A—H14D95.1
C13A—C10—S1A111.0 (8)C15A—C14A—H14D103.6
C9—C10—S1A119.9 (3)H14C—C14A—H14D103.7
C13—C10—S1110.6 (3)C14A—C15A—H15G110.4
C9—C10—S1121.65 (17)C14A—C15A—H15D108.7
C11—S1—C1091.9 (2)H15G—C15A—H15D109.5
C12—C11—S1112.1 (4)C14A—C15A—H15E109.4
C12—C11—H11124.0H15G—C15A—H15E109.5
S1—C11—H11123.9H15D—C15A—H15E109.5
C11—C12—C13110.6 (5)
C6—C1—C2—C30.2 (3)C13A—C10—S1—C1142 (5)
C1—C2—C3—N1177.0 (2)C9—C10—S1—C11178.1 (3)
C1—C2—C3—C40.9 (3)S1A—C10—S1—C114.5 (4)
N1—C3—C4—C5176.8 (2)C10—S1—C11—C120.6 (3)
C2—C3—C4—C51.0 (3)S1—C11—C12—C130.7 (5)
C3—C4—C5—C60.0 (4)C13A—C10—C13—C127.3 (10)
C4—C5—C6—C11.0 (3)C9—C10—C13—C12178.3 (4)
C4—C5—C6—C7179.4 (2)S1A—C10—C13—C12154 (4)
C2—C1—C6—C51.1 (3)S1—C10—C13—C120.2 (6)
C2—C1—C6—C7179.63 (19)C11—C12—C13—C100.6 (7)
C5—C6—C7—O1176.5 (2)C13—C10—S1A—C11A20 (4)
C1—C6—C7—O15.2 (3)C13A—C10—S1A—C11A0.8 (17)
C5—C6—C7—C83.9 (3)C9—C10—S1A—C11A175.2 (14)
C1—C6—C7—C8174.47 (19)S1—C10—S1A—C11A7.3 (14)
O1—C7—C8—C92.4 (3)C10—S1A—C11A—C12A0.0 (13)
C6—C7—C8—C9178.02 (19)S1A—C11A—C12A—C13A0.7 (16)
C7—C8—C9—C10179.1 (2)C11A—C12A—C13A—C101 (2)
C8—C9—C10—C13180.0 (4)C13—C10—C13A—C12A4 (2)
C8—C9—C10—C13A11.2 (11)C9—C10—C13A—C12A175.1 (18)
C8—C9—C10—S1A175.4 (4)S1A—C10—C13A—C12A1 (2)
C8—C9—C10—S12.0 (3)S1—C10—C13A—C12A136 (6)
C13—C10—S1—C110.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.162.931 (3)149
N1—H1B···Cg1ii0.862.803.597 (3)156
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H11NOS·0.5C2H6O
Mr252.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.1413 (1), 13.9754 (2), 18.2647 (2)
V3)1312.35 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.56 × 0.22 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.879, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
22258, 4225, 3893
Rint0.026
(sin θ/λ)max1)0.726
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.205, 1.09
No. of reflections4225
No. of parameters188
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.31
Absolute structureFlack (1983), 1874 Friedel pairs
Absolute structure parameter0.00 (12)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.162.931 (3)149
N1—H1B···Cg1ii0.862.803.597 (3)156
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

TK thanks the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education and the Graduate School, Prince of Songkla University for financial support. The authors thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2009). Acta Cryst. E65, o2168–o2169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGo, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483–499.  CrossRef CAS Google Scholar
First citationNi, L., Meng, C. Q. & Sikorski, J. A. (2004). Expert Opin. Ther. Pat. 14, 1669–1691.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451–453.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575–o1576.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2532-o2533
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds