organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2-Nitro­ethen­yl)naphthalene

aSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: jlhjhr@yahoo.com.cn

(Received 16 September 2009; accepted 17 September 2009; online 26 September 2009)

The title mol­ecule, C12H9NO2, adopts a trans configuration about the olefinic double bond. The dihedral angle between the naphthalene ring system (r.m.s. deviation = 0.012 Å) and the nitro­ethenyl group (r.m.s. deviation = 0.032 Å) is 12.66 (5)°. The mol­ecules are linked into a two-dimensional network parallel to the bc plane by C—H⋯O hydrogen bonds. The substituted benzene rings in adjacent networks are stacked with a centroid–centroid distance of 3.6337 (11) Å, indicating ππ inter­actions.

Related literature

For general background to β-nitro­olefins, see: Barrett & Graboski (1986[Barrett, A. G. M. & Graboski, G. G. (1986). Chem. Rev. 86, 751-762.]). For the synthesis, see: Cheng et al. (2007[Cheng, P., Jiang, Z. Y., Wang, R. R., Zhang, X. M., Wang, Q., Zheng, Y. T., Zhou, J. & Chen, J. J. (2007). Bioorg. Med. Chem. Lett. 17, 4476-4480.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9NO2

  • Mr = 199.20

  • Orthorhombic, P b c a

  • a = 7.2670 (14) Å

  • b = 13.741 (3) Å

  • c = 19.127 (4) Å

  • V = 1909.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 93 K

  • 0.40 × 0.33 × 0.13 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: none

  • 14290 measured reflections

  • 2179 independent reflections

  • 2019 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.099

  • S = 1.00

  • 2179 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.58 3.3919 (19) 144
C7—H7⋯O2ii 0.95 2.52 3.4261 (19) 159
C12—H12⋯O2i 0.95 2.57 3.464 (2) 158
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

β-Nitroolefins are a class of useful and versatile building blocks in organic synthesis (Barrett & Graboski, 1986). The author reports here, the crystal structure of the title compound.

Bond lengths and angles in the title molecule are normal. The molecule adopts a trans configuration about the olefinic double bond (Fig. 1). The naphthalene ring system is planar, with a maximum deviation of 0.021 (1) Å for atom C1. The dihedral angle between the C1-C9 and N1/O1/O2/C11/C12 planes is 12.66 (5)°. The molecules are linked into a two-dimensional network parallel to the bc plane by C—H···O hydrogen bonds (Table 1).

Related literature top

For general background to β-nitroolefins, see: Barrett & Graboski (1986). For the synthesis, see: Cheng et al. (2007).

Experimental top

The title compound was synthesized according to the method reported in the literature (Cheng et al., 2007). Yellow single crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Refinement top

All H atoms were placed in calculated positions, with C-H = 0.95 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell refinement: RAPID-AUTO (Rigaku/MSC, 2004); data reduction: RAPID-AUTO (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
(E)-1-(2-Nitroethenyl)naphthalene top
Crystal data top
C12H9NO2F(000) = 832
Mr = 199.20Dx = 1.386 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5654 reflections
a = 7.2670 (14) Åθ = 3.0–27.5°
b = 13.741 (3) ŵ = 0.10 mm1
c = 19.127 (4) ÅT = 93 K
V = 1909.9 (6) Å3Prism, yellow
Z = 80.40 × 0.33 × 0.13 mm
Data collection top
Rigaku SPIDER
diffractometer
2019 reflections with I > 2σ(I)
Radiation source: Rotating anodeRint = 0.030
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
ω scansh = 99
14290 measured reflectionsk = 1717
2179 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0285P)2 + 1.6P]
where P = (Fo2 + 2Fc2)/3
2179 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C12H9NO2V = 1909.9 (6) Å3
Mr = 199.20Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.2670 (14) ŵ = 0.10 mm1
b = 13.741 (3) ÅT = 93 K
c = 19.127 (4) Å0.40 × 0.33 × 0.13 mm
Data collection top
Rigaku SPIDER
diffractometer
2019 reflections with I > 2σ(I)
14290 measured reflectionsRint = 0.030
2179 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.00Δρmax = 0.30 e Å3
2179 reflectionsΔρmin = 0.20 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4804 (2)0.25001 (8)0.56207 (6)0.0438 (4)
O20.4755 (2)0.35241 (8)0.47651 (6)0.0414 (3)
N10.50070 (19)0.33185 (9)0.53854 (6)0.0270 (3)
C10.61925 (19)0.47388 (10)0.70231 (7)0.0193 (3)
C20.67974 (19)0.56401 (10)0.67959 (8)0.0216 (3)
H20.69070.57590.63080.026*
C30.7251 (2)0.63794 (10)0.72673 (8)0.0233 (3)
H30.76650.69910.70970.028*
C40.7103 (2)0.62294 (10)0.79730 (8)0.0237 (3)
H40.74030.67400.82880.028*
C50.6346 (2)0.51571 (11)0.89674 (8)0.0250 (3)
H50.66280.56690.92830.030*
C60.5794 (2)0.42761 (11)0.92232 (8)0.0260 (3)
H60.56930.41780.97130.031*
C70.5373 (2)0.35112 (11)0.87574 (8)0.0246 (3)
H70.50010.28970.89360.030*
C80.5497 (2)0.36480 (10)0.80489 (7)0.0216 (3)
H80.51980.31260.77440.026*
C90.60624 (18)0.45543 (9)0.77616 (7)0.0189 (3)
C100.65057 (19)0.53203 (10)0.82360 (8)0.0204 (3)
C110.5682 (2)0.39854 (10)0.65200 (7)0.0219 (3)
H110.54190.33560.67000.026*
C120.5554 (2)0.41047 (11)0.58392 (8)0.0278 (3)
H120.58290.47230.56420.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0825 (10)0.0188 (5)0.0300 (6)0.0081 (6)0.0015 (6)0.0001 (5)
O20.0744 (10)0.0281 (6)0.0216 (6)0.0004 (6)0.0060 (6)0.0006 (5)
N10.0370 (7)0.0208 (6)0.0231 (6)0.0009 (6)0.0016 (5)0.0004 (5)
C10.0165 (6)0.0179 (6)0.0236 (7)0.0030 (5)0.0002 (5)0.0002 (5)
C20.0190 (7)0.0218 (7)0.0241 (7)0.0022 (5)0.0003 (5)0.0033 (6)
C30.0191 (7)0.0169 (6)0.0339 (8)0.0018 (5)0.0003 (6)0.0030 (6)
C40.0209 (7)0.0195 (6)0.0306 (8)0.0003 (5)0.0013 (6)0.0041 (6)
C50.0242 (7)0.0255 (7)0.0252 (7)0.0034 (6)0.0003 (6)0.0054 (6)
C60.0281 (8)0.0285 (7)0.0214 (7)0.0056 (6)0.0031 (6)0.0010 (6)
C70.0259 (7)0.0209 (7)0.0270 (7)0.0040 (6)0.0052 (6)0.0048 (6)
C80.0223 (7)0.0174 (6)0.0250 (7)0.0030 (5)0.0011 (6)0.0002 (5)
C90.0147 (6)0.0175 (6)0.0245 (7)0.0038 (5)0.0009 (5)0.0001 (5)
C100.0157 (6)0.0200 (7)0.0255 (7)0.0030 (5)0.0002 (5)0.0014 (5)
C110.0242 (7)0.0167 (6)0.0249 (7)0.0021 (5)0.0003 (6)0.0016 (5)
C120.0389 (9)0.0185 (7)0.0260 (7)0.0042 (6)0.0012 (7)0.0003 (6)
Geometric parameters (Å, º) top
O1—N11.2201 (17)C5—C101.422 (2)
O2—N11.2335 (16)C5—H50.95
N1—C121.4417 (19)C6—C71.411 (2)
C1—C21.3841 (19)C6—H60.95
C1—C91.4381 (19)C7—C81.371 (2)
C1—C111.4613 (19)C7—H70.95
C2—C31.398 (2)C8—C91.4220 (19)
C2—H20.95C8—H80.95
C3—C41.370 (2)C9—C101.4265 (19)
C3—H30.95C11—C121.316 (2)
C4—C101.415 (2)C11—H110.95
C4—H40.95C12—H120.95
C5—C61.366 (2)
O1—N1—O2123.23 (13)C7—C6—H6120.1
O1—N1—C12120.13 (13)C8—C7—C6120.51 (14)
O2—N1—C12116.64 (12)C8—C7—H7119.7
C2—C1—C9119.15 (13)C6—C7—H7119.7
C2—C1—C11120.51 (13)C7—C8—C9121.40 (13)
C9—C1—C11120.34 (12)C7—C8—H8119.3
C1—C2—C3121.50 (13)C9—C8—H8119.3
C1—C2—H2119.3C8—C9—C10117.75 (13)
C3—C2—H2119.3C8—C9—C1123.58 (13)
C4—C3—C2120.52 (13)C10—C9—C1118.67 (13)
C4—C3—H3119.7C4—C10—C5120.94 (13)
C2—C3—H3119.7C4—C10—C9119.65 (13)
C3—C4—C10120.48 (13)C5—C10—C9119.42 (13)
C3—C4—H4119.8C12—C11—C1125.55 (13)
C10—C4—H4119.8C12—C11—H11117.2
C6—C5—C10121.07 (14)C1—C11—H11117.2
C6—C5—H5119.5C11—C12—N1121.46 (14)
C10—C5—H5119.5C11—C12—H12119.3
C5—C6—C7119.84 (14)N1—C12—H12119.3
C5—C6—H6120.1
C9—C1—C2—C31.2 (2)C3—C4—C10—C5179.96 (14)
C11—C1—C2—C3178.42 (13)C3—C4—C10—C90.2 (2)
C1—C2—C3—C40.1 (2)C6—C5—C10—C4179.12 (14)
C2—C3—C4—C100.6 (2)C6—C5—C10—C90.7 (2)
C10—C5—C6—C70.0 (2)C8—C9—C10—C4179.02 (12)
C5—C6—C7—C80.7 (2)C1—C9—C10—C41.6 (2)
C6—C7—C8—C90.5 (2)C8—C9—C10—C50.79 (19)
C7—C8—C9—C100.2 (2)C1—C9—C10—C5178.64 (13)
C7—C8—C9—C1179.20 (14)C2—C1—C11—C127.4 (2)
C2—C1—C9—C8178.57 (13)C9—C1—C11—C12172.20 (15)
C11—C1—C9—C81.8 (2)C1—C11—C12—N1178.90 (14)
C2—C1—C9—C102.03 (19)O1—N1—C12—C116.4 (2)
C11—C1—C9—C10177.61 (12)O2—N1—C12—C11173.19 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.583.3919 (19)144
C7—H7···O2ii0.952.523.4261 (19)159
C12—H12···O2i0.952.573.464 (2)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H9NO2
Mr199.20
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)93
a, b, c (Å)7.2670 (14), 13.741 (3), 19.127 (4)
V3)1909.9 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.33 × 0.13
Data collection
DiffractometerRigaku SPIDER
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14290, 2179, 2019
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.099, 1.00
No. of reflections2179
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.20

Computer programs: RAPID-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.583.3919 (19)144
C7—H7···O2ii0.952.523.4261 (19)159
C12—H12···O2i0.952.573.464 (2)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The author thanks the Centre for Testing and Analysis, Cheng Du Branch, Chinese Academy of Sciences, for analytical support.

References

First citationBarrett, A. G. M. & Graboski, G. G. (1986). Chem. Rev. 86, 751–762.  CrossRef CAS Web of Science Google Scholar
First citationCheng, P., Jiang, Z. Y., Wang, R. R., Zhang, X. M., Wang, Q., Zheng, Y. T., Zhou, J. & Chen, J. J. (2007). Bioorg. Med. Chem. Lett. 17, 4476–4480.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds