organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2540-o2541

(E)-N′-(3-Benz­yl­oxy-4-meth­oxy­benzyl­­idene)isonicotinohydrazide

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 September 2009; accepted 19 September 2009; online 26 September 2009)

In the title compound, C21H19N3O3, the pyridine ring forms a dihedral angle of 15.25 (6)° with the benzene ring. The dihedral angle between the two benzene rings is 83.66 (7)°. The meth­oxy group is slightly twisted away from the attached ring [C—O—C—C = 7.5 (2)°]. In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular N—H⋯N and C—H⋯O hydrogen bonds. The structure is further stabilized by C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For applications of isoniazid derivatives, see: Janin (2007[Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.]); Maccari et al. (2005[Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509-2513.]); Slayden & Barry (2000[Slayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659-669.]). For the preparation, see: Lourenço et al. (2008[Lourenço, M. C. da S., Ferreira, M. de L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A., Henriques, M. & das, G. M. O. (2008). Eur. J. Med. Chem. 43, 1344-1347.]). For the biological activity of Schiff bases, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]). For related structures, see: Naveenkumar, Sadikun, Ibrahim, Goh & Fun (2009[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2235-o2236.]); Naveenkumar, Sadikun, Ibrahim, Yeap & Fun (2009[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2009). Acta Cryst. E65, o1912.]); Shi (2005[Shi, J. (2005). Acta Cryst. E61, o3933-o3934.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19N3O3

  • Mr = 361.39

  • Monoclinic, P 21 /c

  • a = 18.3930 (6) Å

  • b = 11.5574 (4) Å

  • c = 8.3508 (3) Å

  • β = 93.436 (2)°

  • V = 1771.98 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.71 × 0.13 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.992

  • 27863 measured reflections

  • 6434 independent reflections

  • 3841 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.145

  • S = 1.06

  • 6433 reflections

  • 249 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯N1i 0.88 (2) 2.54 (2) 3.3122 (17) 146 (1)
C9—H9A⋯O1ii 0.93 2.55 3.3524 (17) 144
C19—H19A⋯O3iii 0.93 2.54 3.3960 (17) 153
C17—H17ACg1iv 0.93 2.93 3.6694 (17) 137
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+2, -z+1; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). As a part of a current work of synthesis of (E)-N'-(substituted-benzylidene) isonicotinohydrazide derivatives, in this paper we present the crystal structure of the title compound.

Bond lengths (Allen et al., 1987) and the angles of the title compound (Fig. 1) are within the normal range and are comparable to those observed for closely related structures (Naveenkumar, Sadikun, Ibrahim, Goh & Fun, 2009; Naveenkumar, Sadikun, Ibrahim, Yeap & Fun, 2009). The mean plane of pyridine (C1–C5/N1) ring forms a dihedral angle of 15.25 (6)° with the benzene (C8–C13) ring. The two benzene (C8–C13 and C15–C20) rings form a dihedral angle of 83.66 (7)° with each other.

In the crystal packing (Fig. 2), molecules are linked into a three-dimensional network by intermolecular N2—H1N2···N1, C9—H9A···O1 and C19—H19A···O3 hydrogen bonds. The crystal structure is further stabilized by C17—H17A···Cg1 interactions (Table 1; Cg1 is the centroid of the C8-C13 benzene ring).

Related literature top

For bond-length data, see: Allen et al. (1987). For applications of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000). For the preparation, see: Lourenço et al. (2008). For the biological activity of Schiff bases, see: Kahwa et al. (1986). For related structures, see: Naveenkumar, Sadikun, Ibrahim, Goh & Fun (2009); Naveenkumar, Sadikun, Ibrahim, Yeap & Fun (2009); Shi (2005). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The isoniazid (INH) derivative was prepared following the procedure by literature (Lourenço et al., 2008). (E)—N'-(3-Benzyloxy-4-methoxybenzylidene)isonicotinohydrazide was prepared by reaction between the 3-benzyloxy-4-methoxy benzaldehyde (1.0 eq) with INH (1.0 eq) in ethanol/water (10 ml), initially dissolving the INH in water and adding the respective solution over a solution of the aldehyde in ethanol. After stirring for 1 to 3 h at room temperature, the resulting mixture was concentrated under reduced pressure. The residue was purified by washing with cold ethyl alcohol and ethyl ether to afford the pure derivative. Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of a dimethyl sulfoxide solution at room temperature.

Refinement top

All carbon-bound H atoms were positioned geometrically [C–H = 0.93-0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group. Atom H1N2 was located in a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
(E)-N'-(3-Benzyloxy-4-methoxybenzylidene)isonicotinohydrazide top
Crystal data top
C21H19N3O3F(000) = 760
Mr = 361.39Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4601 reflections
a = 18.3930 (6) Åθ = 2.8–32.1°
b = 11.5574 (4) ŵ = 0.09 mm1
c = 8.3508 (3) ÅT = 100 K
β = 93.436 (2)°Needle, yellow
V = 1771.98 (11) Å30.71 × 0.13 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6434 independent reflections
Radiation source: fine-focus sealed tube3841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 32.6°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2627
Tmin = 0.937, Tmax = 0.992k = 1517
27863 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0618P)2]
where P = (Fo2 + 2Fc2)/3
6433 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C21H19N3O3V = 1771.98 (11) Å3
Mr = 361.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.3930 (6) ŵ = 0.09 mm1
b = 11.5574 (4) ÅT = 100 K
c = 8.3508 (3) Å0.71 × 0.13 × 0.09 mm
β = 93.436 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6434 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3841 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.992Rint = 0.061
27863 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.37 e Å3
6433 reflectionsΔρmin = 0.28 e Å3
249 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34254 (5)0.51645 (9)0.11366 (12)0.0270 (2)
O20.17576 (5)0.99561 (8)0.38579 (11)0.0206 (2)
O30.17536 (5)1.19805 (8)0.25594 (11)0.0221 (2)
N10.49029 (7)0.30387 (11)0.27715 (14)0.0258 (3)
N20.38144 (6)0.66534 (10)0.03723 (14)0.0205 (3)
N30.34440 (6)0.74619 (10)0.04977 (13)0.0205 (3)
C10.46166 (7)0.50212 (12)0.22030 (17)0.0228 (3)
H1A0.46870.57990.24320.027*
C20.49753 (8)0.41733 (13)0.30194 (17)0.0239 (3)
H2A0.52870.44090.37920.029*
C30.44347 (8)0.27391 (13)0.16720 (19)0.0310 (4)
H3A0.43610.19550.14920.037*
C40.40545 (8)0.35211 (13)0.07883 (18)0.0265 (3)
H4A0.37380.32630.00370.032*
C50.41511 (7)0.46942 (12)0.10385 (15)0.0182 (3)
C60.37626 (7)0.55180 (12)0.00140 (16)0.0190 (3)
C70.33453 (7)0.84479 (12)0.02067 (16)0.0192 (3)
H7A0.35280.85650.12090.023*
C80.29549 (7)0.93788 (12)0.05350 (16)0.0185 (3)
C90.29436 (7)1.04692 (12)0.01554 (16)0.0205 (3)
H9A0.31981.06020.10680.025*
C100.25541 (7)1.13699 (12)0.05066 (16)0.0211 (3)
H10A0.25561.21020.00440.025*
C110.21677 (7)1.11759 (11)0.18421 (16)0.0182 (3)
C120.21699 (7)1.00623 (11)0.25633 (15)0.0173 (3)
C130.25588 (7)0.91782 (12)0.18985 (16)0.0186 (3)
H13A0.25590.84450.23560.022*
C140.16762 (8)0.88010 (12)0.44760 (18)0.0246 (3)
H14A0.21480.84920.48390.030*
H14B0.14660.82990.36410.030*
C150.11900 (7)0.88528 (11)0.58412 (17)0.0197 (3)
C160.14817 (8)0.90316 (12)0.73981 (18)0.0255 (3)
H16A0.19830.91110.75850.031*
C170.10355 (9)0.90916 (13)0.86672 (18)0.0312 (4)
H17A0.12360.92150.97020.037*
C180.02901 (9)0.89689 (13)0.83993 (19)0.0312 (4)
H18A0.00110.90070.92540.037*
C190.00072 (8)0.87894 (13)0.6859 (2)0.0318 (4)
H19A0.05080.87070.66770.038*
C200.04401 (8)0.87320 (13)0.55915 (18)0.0260 (3)
H20A0.02370.86110.45580.031*
C210.16494 (9)1.30698 (12)0.17427 (18)0.0280 (3)
H21A0.13211.35420.23100.042*
H21B0.14491.29360.06710.042*
H21C0.21091.34590.17030.042*
H1N20.4037 (9)0.6892 (16)0.122 (2)0.046 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0320 (5)0.0276 (6)0.0229 (5)0.0005 (5)0.0133 (5)0.0027 (4)
O20.0252 (5)0.0174 (5)0.0203 (5)0.0004 (4)0.0108 (4)0.0016 (4)
O30.0297 (5)0.0164 (5)0.0210 (5)0.0043 (4)0.0079 (4)0.0011 (4)
N10.0284 (6)0.0237 (6)0.0258 (6)0.0024 (5)0.0045 (5)0.0026 (5)
N20.0244 (6)0.0200 (6)0.0179 (6)0.0025 (5)0.0094 (5)0.0010 (5)
N30.0211 (6)0.0210 (6)0.0201 (6)0.0020 (5)0.0076 (5)0.0033 (5)
C10.0271 (7)0.0185 (7)0.0236 (7)0.0026 (6)0.0083 (6)0.0020 (6)
C20.0248 (7)0.0265 (8)0.0212 (7)0.0042 (6)0.0084 (6)0.0012 (6)
C30.0362 (8)0.0188 (7)0.0390 (9)0.0011 (7)0.0123 (7)0.0000 (6)
C40.0271 (7)0.0220 (7)0.0315 (8)0.0000 (6)0.0113 (6)0.0032 (6)
C50.0181 (6)0.0211 (7)0.0156 (6)0.0020 (5)0.0036 (5)0.0004 (5)
C60.0187 (6)0.0204 (7)0.0183 (7)0.0007 (5)0.0038 (5)0.0006 (5)
C70.0183 (6)0.0223 (7)0.0178 (6)0.0007 (5)0.0062 (5)0.0009 (5)
C80.0171 (6)0.0206 (7)0.0180 (6)0.0010 (5)0.0034 (5)0.0020 (5)
C90.0217 (7)0.0224 (7)0.0180 (7)0.0013 (6)0.0060 (5)0.0009 (5)
C100.0247 (7)0.0182 (7)0.0207 (7)0.0007 (6)0.0034 (6)0.0023 (5)
C110.0200 (6)0.0174 (6)0.0175 (6)0.0003 (5)0.0027 (5)0.0021 (5)
C120.0172 (6)0.0187 (6)0.0163 (6)0.0020 (5)0.0049 (5)0.0011 (5)
C130.0193 (6)0.0178 (6)0.0190 (7)0.0001 (5)0.0043 (5)0.0011 (5)
C140.0287 (7)0.0166 (7)0.0301 (8)0.0018 (6)0.0139 (6)0.0041 (6)
C150.0236 (7)0.0142 (6)0.0221 (7)0.0016 (5)0.0084 (6)0.0016 (5)
C160.0274 (7)0.0196 (7)0.0294 (8)0.0022 (6)0.0005 (6)0.0015 (6)
C170.0507 (10)0.0242 (8)0.0188 (7)0.0000 (7)0.0031 (7)0.0011 (6)
C180.0440 (9)0.0239 (8)0.0280 (8)0.0008 (7)0.0208 (7)0.0000 (6)
C190.0238 (7)0.0328 (9)0.0401 (10)0.0015 (6)0.0126 (7)0.0020 (7)
C200.0251 (7)0.0315 (8)0.0217 (7)0.0011 (6)0.0048 (6)0.0015 (6)
C210.0405 (9)0.0181 (7)0.0260 (8)0.0074 (6)0.0074 (7)0.0032 (6)
Geometric parameters (Å, º) top
O1—C61.2249 (16)C9—C101.3964 (19)
O2—C121.3628 (16)C9—H9A0.93
O2—C141.4423 (16)C10—C111.3763 (19)
O3—C111.3633 (16)C10—H10A0.93
O3—C211.4391 (16)C11—C121.4208 (18)
N1—C21.3354 (19)C12—C131.3826 (18)
N1—C31.3414 (19)C13—H13A0.93
N2—C61.3560 (18)C14—C151.492 (2)
N2—N31.3871 (16)C14—H14A0.97
N2—H1N20.885 (18)C14—H14B0.97
N3—C71.2902 (17)C15—C201.390 (2)
C1—C21.3836 (19)C15—C161.392 (2)
C1—C51.3861 (19)C16—C171.380 (2)
C1—H1A0.93C16—H16A0.93
C2—H2A0.93C17—C181.383 (2)
C3—C41.383 (2)C17—H17A0.93
C3—H3A0.93C18—C191.383 (2)
C4—C51.3849 (19)C18—H18A0.93
C4—H4A0.93C19—C201.380 (2)
C5—C61.5049 (19)C19—H19A0.93
C7—C81.4527 (19)C20—H20A0.93
C7—H7A0.93C21—H21A0.96
C8—C91.3855 (19)C21—H21B0.96
C8—C131.4072 (18)C21—H21C0.96
C12—O2—C14116.22 (10)O3—C11—C12114.78 (11)
C11—O3—C21116.78 (10)C10—C11—C12120.17 (12)
C2—N1—C3115.70 (13)O2—C12—C13125.30 (12)
C6—N2—N3118.92 (12)O2—C12—C11115.49 (11)
C6—N2—H1N2122.3 (12)C13—C12—C11119.18 (12)
N3—N2—H1N2118.4 (12)C12—C13—C8120.56 (12)
C7—N3—N2114.60 (11)C12—C13—H13A119.7
C2—C1—C5119.03 (13)C8—C13—H13A119.7
C2—C1—H1A120.5O2—C14—C15108.43 (11)
C5—C1—H1A120.5O2—C14—H14A110.0
N1—C2—C1124.35 (14)C15—C14—H14A110.0
N1—C2—H2A117.8O2—C14—H14B110.0
C1—C2—H2A117.8C15—C14—H14B110.0
N1—C3—C4124.23 (14)H14A—C14—H14B108.4
N1—C3—H3A117.9C20—C15—C16118.60 (13)
C4—C3—H3A117.9C20—C15—C14121.09 (13)
C3—C4—C5119.06 (14)C16—C15—C14120.30 (13)
C3—C4—H4A120.5C17—C16—C15120.72 (14)
C5—C4—H4A120.5C17—C16—H16A119.6
C4—C5—C1117.58 (13)C15—C16—H16A119.6
C4—C5—C6117.49 (12)C16—C17—C18119.99 (14)
C1—C5—C6124.89 (13)C16—C17—H17A120.0
O1—C6—N2123.42 (13)C18—C17—H17A120.0
O1—C6—C5121.06 (13)C19—C18—C17119.91 (15)
N2—C6—C5115.52 (12)C19—C18—H18A120.0
N3—C7—C8121.29 (12)C17—C18—H18A120.0
N3—C7—H7A119.4C20—C19—C18119.98 (14)
C8—C7—H7A119.4C20—C19—H19A120.0
C9—C8—C13119.41 (12)C18—C19—H19A120.0
C9—C8—C7119.45 (12)C19—C20—C15120.79 (14)
C13—C8—C7121.07 (12)C19—C20—H20A119.6
C8—C9—C10120.56 (13)C15—C20—H20A119.6
C8—C9—H9A119.7O3—C21—H21A109.5
C10—C9—H9A119.7O3—C21—H21B109.5
C11—C10—C9120.10 (13)H21A—C21—H21B109.5
C11—C10—H10A120.0O3—C21—H21C109.5
C9—C10—H10A120.0H21A—C21—H21C109.5
O3—C11—C10125.04 (12)H21B—C21—H21C109.5
C6—N2—N3—C7160.87 (12)C9—C10—C11—O3178.10 (12)
C3—N1—C2—C11.4 (2)C9—C10—C11—C120.70 (19)
C5—C1—C2—N10.4 (2)C14—O2—C12—C135.78 (18)
C2—N1—C3—C41.8 (2)C14—O2—C12—C11172.17 (11)
N1—C3—C4—C50.3 (2)O3—C11—C12—O20.27 (16)
C3—C4—C5—C11.5 (2)C10—C11—C12—O2178.65 (11)
C3—C4—C5—C6176.45 (12)O3—C11—C12—C13178.35 (11)
C2—C1—C5—C41.84 (19)C10—C11—C12—C130.56 (19)
C2—C1—C5—C6175.95 (12)O2—C12—C13—C8178.59 (12)
N3—N2—C6—O12.77 (19)C11—C12—C13—C80.71 (18)
N3—N2—C6—C5177.17 (10)C9—C8—C13—C120.98 (19)
C4—C5—C6—O16.12 (19)C7—C8—C13—C12177.89 (12)
C1—C5—C6—O1171.67 (13)C12—O2—C14—C15178.00 (10)
C4—C5—C6—N2173.82 (12)O2—C14—C15—C2089.96 (15)
C1—C5—C6—N28.39 (18)O2—C14—C15—C1689.64 (15)
N2—N3—C7—C8178.85 (11)C20—C15—C16—C170.2 (2)
N3—C7—C8—C9171.47 (12)C14—C15—C16—C17179.39 (13)
N3—C7—C8—C1311.63 (19)C15—C16—C17—C180.3 (2)
C13—C8—C9—C101.11 (19)C16—C17—C18—C190.2 (2)
C7—C8—C9—C10178.06 (12)C17—C18—C19—C200.1 (2)
C8—C9—C10—C110.98 (19)C18—C19—C20—C150.0 (2)
C21—O3—C11—C107.50 (19)C16—C15—C20—C190.1 (2)
C21—O3—C11—C12171.35 (11)C14—C15—C20—C19179.52 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N1i0.88 (2)2.54 (2)3.3122 (17)146 (1)
C9—H9A···O1ii0.932.553.3524 (17)144
C19—H19A···O3iii0.932.543.3960 (17)153
C17—H17A···Cg1iv0.932.933.6694 (17)137
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x, y+3/2, z1/2; (iii) x, y+2, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H19N3O3
Mr361.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.3930 (6), 11.5574 (4), 8.3508 (3)
β (°) 93.436 (2)
V3)1771.98 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.71 × 0.13 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.937, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
27863, 6434, 3841
Rint0.061
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.145, 1.06
No. of reflections6433
No. of parameters249
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N1i0.88 (2)2.54 (2)3.3122 (17)146 (1)
C9—H9A···O1ii0.932.553.3524 (17)144
C19—H19A···O3iii0.932.543.3960 (17)153
C17—H17A···Cg1iv0.932.933.6694 (17)137
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x, y+3/2, z1/2; (iii) x, y+2, z+1; (iv) x, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: amirin@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

This research is supported by Universiti Sains Malaysia (USM) under the University Research Grant No. 1001/PFARMASI/815005. H-KF and W-SL thank USM for the Research University Golden Goose Grant No. 1001/PFIZIK/811012. W-SL also thanks the Malaysian government and USM for the award of the post of Assistant Research Officer under Research University Golden Goose Grant No. 1001/PFIZIK/811012. HSN is grateful for a USM fellowship for financial assistance.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJanin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationLourenço, M. C. da S., Ferreira, M. de L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A., Henriques, M. & das, G. M. O. (2008). Eur. J. Med. Chem. 43, 1344–1347.  Web of Science PubMed Google Scholar
First citationMaccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2235–o2236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2009). Acta Cryst. E65, o1912.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. (2005). Acta Cryst. E61, o3933–o3934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSlayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659–669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2540-o2541
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds