organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-1-Meth­oxy­carbonyl-3-(4-nitro­phen­yl)propan-2-aminium bromide

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 20 August 2009; accepted 31 August 2009; online 9 September 2009)

In the crystal structure of the title compound, C10H13N2O4+·Br, inter­molecular N—H⋯Br and N—H⋯(O,Br) hydrogen bonds link the cations and anions into a two-dimensional network parallel to the ab plane.

Related literature

For applications of metal-organic coordination compounds, see: Xiong et al. (1999[Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051-1052.]); Fu, Zhang et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]). For metal-organic frameworks with amino acid deriv­atives, see: Chen et al. (2000[Chen, Z.-F., Xiong, R.-G., Zuo, J.-L., Guo, Z.-L., You, X.-Z. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4013-4014.]); Xie et al. (2002[Xie, Y.-R., Xiong, R.-G., Xue, X., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2002). Inorg. Chem. 41, 3323-3326.]); Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N2O4+·Br

  • Mr = 305.13

  • Monoclinic, P 21

  • a = 4.9323 (10) Å

  • b = 8.6233 (17) Å

  • c = 15.226 (3) Å

  • β = 95.77 (3)°

  • V = 644.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.20 mm−1

  • T = 298 K

  • 0.40 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.90, Tmax = 1.00

  • 6658 measured reflections

  • 2917 independent reflections

  • 2532 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.085

  • S = 1.04

  • 2917 reflections

  • 154 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1202 Friedel pairs

  • Flack parameter: 0.008 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.87 2.61 3.031 (4) 111
N1—H1A⋯Br1ii 0.87 2.61 3.290 (3) 135
N1—H1B⋯Br1iii 0.93 2.51 3.303 (3) 143
N1—H1C⋯Br1iv 1.00 2.55 3.495 (3) 157
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+2]; (ii) x, y, z+1; (iii) x-1, y, z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Fu, Zhang et al., 2008; Xiong et al., 1999; Fu & Xiong, 2008). Amino acid derivatives constitute a class of excellent ligands for the construction of novel metal-organic frameworks (Fu et al., 2007; Xie et al., 2002; Chen et al., 2000). We report here the crystal structure of the title compound.

The title compound is built up from a Br- anion and a protonated amino group cation (Fig.1). The nitro group and the benzene ring are nearly coplanar being twisted to each other by 2.39 (6)°. The S absolute configuration at C8 is deduced from the synthetic pathway and confirmed by the X-ray analysis.

The crystal packing is stabilized by N—H···Br and N—H···O H-bonds (Table 1) building an infinite two-dimensional network parallel to ab plane (Fig.2).

Related literature top

For applications of metal-organic coordination compounds, see: Xiong et al. (1999); Fu, Zhang et al. (2008); Fu & Xiong (2008). For metal-organic frameworks with amino acid derivatives, see: Chen et al. (2000); Xie et al. (2002); Fu et al. (2007).

Experimental top

Under nitrogen protection, methyl 2-amino-3-(4-nitrophenyl)propanoate (30 mmol), nitric acid (50 mmol) and sulfuric acid (20 mmol) were added in a flask. The mixture was stirred at 110 °C for 3 hours. The resulting solution was poured into ice water (100mL), then filtered and washed with distilled water. The crude product was recrystallized with distilled water by adding 4ml HBr to yield colourless needle-like crystals, suitable for X-ray analysis.

Refinement top

C-bound H atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å (aromatic), C-H = 0.96 Å (methyl), C-H = 0.97 Å (methylene) and C-H = 0.98 Å (methine), with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(methyl). The H atoms of amine group were located in difference Fourier maps and at the last stage of refinement they were treated as riding, with Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing, viewed along the c axis. Dashed lines denote N—H···Br and N—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.
(S)-1-Methoxycarbonyl-3-(4-nitrophenyl)propan-2-aminium bromide top
Crystal data top
C10H13N2O4+·BrF(000) = 308
Mr = 305.13Dx = 1.573 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2532 reflections
a = 4.9323 (10) Åθ = 3.6–27.5°
b = 8.6233 (17) ŵ = 3.20 mm1
c = 15.226 (3) ÅT = 298 K
β = 95.77 (3)°Needle, colourless
V = 644.3 (2) Å30.40 × 0.05 × 0.05 mm
Z = 2
Data collection top
Rigaku Mercury2
diffractometer
2917 independent reflections
Radiation source: fine-focus sealed tube2532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.6°
CCD profile fitting scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.90, Tmax = 1.00l = 1919
6658 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2)]
S = 1.04(Δ/σ)max < 0.001
2917 reflectionsΔρmax = 0.62 e Å3
154 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 1202 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.008 (5)
Crystal data top
C10H13N2O4+·BrV = 644.3 (2) Å3
Mr = 305.13Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.9323 (10) ŵ = 3.20 mm1
b = 8.6233 (17) ÅT = 298 K
c = 15.226 (3) Å0.40 × 0.05 × 0.05 mm
β = 95.77 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2917 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2532 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 1.00Rint = 0.055
6658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.62 e Å3
S = 1.04Δρmin = 0.30 e Å3
2917 reflectionsAbsolute structure: Flack (1983), 1202 Friedel pairs
154 parametersAbsolute structure parameter: 0.008 (5)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.4984 (8)0.4001 (4)0.7127 (2)0.0390 (9)
C20.8039 (10)0.2806 (6)0.6203 (3)0.0565 (12)
H20.93590.20630.61220.068*
C70.3794 (8)0.4113 (5)0.7995 (2)0.0438 (10)
H7A0.33490.30810.81880.053*
H7B0.21180.47080.79160.053*
C30.7186 (9)0.3798 (6)0.5544 (3)0.0527 (12)
C50.4128 (9)0.5000 (5)0.6421 (3)0.0554 (11)
H50.27960.57420.64890.067*
C40.5236 (10)0.4886 (6)0.5644 (3)0.0642 (15)
H40.46670.55500.51800.077*
C10.6940 (9)0.2910 (5)0.6986 (3)0.0481 (11)
H10.75230.22260.74390.058*
O10.7970 (5)0.6832 (4)0.79876 (16)0.0488 (7)
C90.6074 (6)0.6629 (6)0.85319 (19)0.0360 (7)
O20.4710 (6)0.7600 (3)0.88109 (18)0.0495 (7)
C80.5764 (8)0.4886 (4)0.8712 (2)0.0325 (8)
H80.75510.43840.87310.039*
N20.8359 (11)0.3691 (6)0.4697 (3)0.0759 (13)
O31.0072 (9)0.2696 (7)0.4603 (2)0.1077 (17)
O40.7514 (11)0.4561 (6)0.4108 (3)0.1200 (18)
C100.8330 (12)0.8435 (6)0.7701 (3)0.0717 (15)
H10A0.97360.84720.73080.107*
H10B0.88370.90760.82060.107*
H10C0.66530.88080.73990.107*
N10.4679 (6)0.4728 (4)0.95973 (18)0.0391 (8)
H1A0.60150.47361.00210.059*
H1B0.32450.54280.95910.059*
H1C0.38350.36720.96070.059*
Br10.99538 (6)0.66497 (4)0.05395 (2)0.04632 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C60.045 (2)0.043 (2)0.029 (2)0.0124 (19)0.0045 (17)0.0031 (18)
C20.065 (3)0.061 (3)0.045 (3)0.003 (2)0.009 (2)0.018 (2)
C70.042 (2)0.050 (2)0.041 (2)0.014 (2)0.0121 (18)0.006 (2)
C30.064 (3)0.064 (3)0.032 (2)0.019 (2)0.015 (2)0.014 (2)
C50.062 (3)0.056 (3)0.049 (3)0.007 (2)0.006 (2)0.002 (2)
C40.096 (4)0.064 (3)0.033 (3)0.005 (3)0.010 (3)0.008 (2)
C10.063 (3)0.041 (2)0.040 (2)0.003 (2)0.005 (2)0.0061 (19)
O10.0659 (16)0.0393 (17)0.0455 (14)0.0094 (17)0.0266 (12)0.0001 (15)
C90.0413 (16)0.0386 (16)0.0280 (16)0.001 (3)0.0032 (13)0.001 (2)
O20.0603 (18)0.0379 (16)0.0533 (18)0.0130 (15)0.0201 (14)0.0078 (14)
C80.039 (2)0.0319 (19)0.0278 (19)0.0033 (17)0.0099 (15)0.0005 (16)
N20.098 (4)0.094 (3)0.039 (3)0.028 (3)0.024 (3)0.021 (2)
O30.109 (4)0.151 (5)0.070 (3)0.003 (3)0.044 (3)0.034 (3)
O40.177 (5)0.142 (4)0.049 (3)0.017 (4)0.048 (3)0.001 (3)
C100.103 (4)0.058 (3)0.059 (3)0.015 (3)0.031 (3)0.010 (2)
N10.054 (2)0.0350 (17)0.0299 (17)0.0033 (15)0.0137 (15)0.0039 (14)
Br10.0471 (2)0.0436 (2)0.0490 (2)0.0020 (3)0.00881 (15)0.0088 (3)
Geometric parameters (Å, º) top
C6—C11.380 (6)O1—C91.322 (4)
C6—C51.408 (5)O1—C101.466 (6)
C6—C71.503 (5)C9—O21.180 (5)
C2—C31.353 (6)C9—C81.538 (6)
C2—C11.363 (5)C8—N11.506 (4)
C2—H20.9300C8—H80.9800
C7—C81.538 (5)N2—O41.210 (6)
C7—H7A0.9700N2—O31.223 (6)
C7—H7B0.9700C10—H10A0.9600
C3—C41.363 (6)C10—H10B0.9600
C3—N21.468 (6)C10—H10C0.9600
C5—C41.356 (5)N1—H1A0.8742
C5—H50.9300N1—H1B0.9289
C4—H40.9300N1—H1C1.0023
C1—H10.9300
C1—C6—C5117.4 (4)O2—C9—O1126.6 (5)
C1—C6—C7121.4 (4)O2—C9—C8124.0 (3)
C5—C6—C7121.2 (4)O1—C9—C8109.3 (4)
C3—C2—C1119.1 (4)N1—C8—C9107.4 (3)
C3—C2—H2120.4N1—C8—C7109.9 (3)
C1—C2—H2120.4C9—C8—C7111.4 (3)
C6—C7—C8112.1 (3)N1—C8—H8109.4
C6—C7—H7A109.2C9—C8—H8109.4
C8—C7—H7A109.2C7—C8—H8109.4
C6—C7—H7B109.2O4—N2—O3122.6 (5)
C8—C7—H7B109.2O4—N2—C3118.3 (6)
H7A—C7—H7B107.9O3—N2—C3119.0 (5)
C2—C3—C4121.5 (4)O1—C10—H10A109.5
C2—C3—N2119.4 (5)O1—C10—H10B109.5
C4—C3—N2119.1 (5)H10A—C10—H10B109.5
C4—C5—C6120.3 (4)O1—C10—H10C109.5
C4—C5—H5119.8H10A—C10—H10C109.5
C6—C5—H5119.8H10B—C10—H10C109.5
C5—C4—C3119.9 (4)C8—N1—H1A110.5
C5—C4—H4120.1C8—N1—H1B105.7
C3—C4—H4120.1H1A—N1—H1B121.3
C2—C1—C6121.8 (4)C8—N1—H1C106.3
C2—C1—H1119.1H1A—N1—H1C106.2
C6—C1—H1119.1H1B—N1—H1C105.9
C9—O1—C10115.2 (4)
C1—C6—C7—C875.9 (5)C10—O1—C9—O21.2 (5)
C5—C6—C7—C8104.6 (4)C10—O1—C9—C8175.3 (3)
C1—C2—C3—C40.6 (7)O2—C9—C8—N129.0 (4)
C1—C2—C3—N2179.9 (4)O1—C9—C8—N1154.3 (3)
C1—C6—C5—C40.8 (6)O2—C9—C8—C791.3 (4)
C7—C6—C5—C4179.7 (4)O1—C9—C8—C785.4 (3)
C6—C5—C4—C30.1 (7)C6—C7—C8—N1170.5 (3)
C2—C3—C4—C50.6 (7)C6—C7—C8—C970.7 (4)
N2—C3—C4—C5179.9 (4)C2—C3—N2—O4178.0 (5)
C3—C2—C1—C60.2 (7)C4—C3—N2—O41.3 (7)
C5—C6—C1—C20.9 (6)C2—C3—N2—O30.6 (7)
C7—C6—C1—C2179.7 (4)C4—C3—N2—O3178.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.872.613.031 (4)111
N1—H1A···Br1ii0.872.613.290 (3)135
N1—H1B···Br1iii0.932.513.303 (3)143
N1—H1C···Br1iv1.002.553.495 (3)157
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x, y, z+1; (iii) x1, y, z+1; (iv) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H13N2O4+·Br
Mr305.13
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)4.9323 (10), 8.6233 (17), 15.226 (3)
β (°) 95.77 (3)
V3)644.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.20
Crystal size (mm)0.40 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.90, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
6658, 2917, 2532
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.085, 1.04
No. of reflections2917
No. of parameters154
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.30
Absolute structureFlack (1983), 1202 Friedel pairs
Absolute structure parameter0.008 (5)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.872.613.031 (4)110.6
N1—H1A···Br1ii0.872.613.290 (3)135.3
N1—H1B···Br1iii0.932.513.303 (3)143.3
N1—H1C···Br1iv1.002.553.495 (3)157.3
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x, y, z+1; (iii) x1, y, z+1; (iv) x+1, y1/2, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationChen, Z.-F., Xiong, R.-G., Zuo, J.-L., Guo, Z.-L., You, X.-Z. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4013–4014.  Web of Science CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y.-R., Xiong, R.-G., Xue, X., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2002). Inorg. Chem. 41, 3323–3326.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051–1052.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds