organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-(−)-N-Isovalerylcamphorsultam

aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: huyang@mail.hz.zj.cn

(Received 21 August 2009; accepted 1 September 2009; online 9 September 2009)

The title compound, C15H25NO3S, was prepared from (R)-(−)camphorsultam and isovaleryl chloride. The asymetric unit contains two independent mol­ecules with slightly different conformations. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into two independent hydrogen-bonded chains propagating along the a and b axes.

Related literature

The title compound is used to obtain a key intermediate in the synthesis of the new renin inhibitor Aliskiren. For the properties of Aliskiren, see Mariano et al. (2008[Mariano, S., Cristiano, G., Ennio, G. & Alessandro, F. (2008). Patent WO2008006394 A1.]).

[Scheme 1]

Experimental

Crystal data
  • C15H25NO3S

  • Mr = 299.42

  • Tetragonal, P 41

  • a = 7.9038 (7) Å

  • c = 50.228 (8) Å

  • V = 3137.8 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.939, Tmax = 0.959

  • 16320 measured reflections

  • 6416 independent reflections

  • 5184 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.109

  • S = 1.04

  • 6416 reflections

  • 370 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2779 Friedel pairs

  • Flack parameter: 0.03 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O3i 0.97 2.45 3.387 (3) 162
C15′—H15F⋯O3′ii 0.96 2.49 3.450 (5) 173
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aliskiren is a new renin inhibitor, useful for the treatment of hypertension and related cardiovascular diseases (Mariano et al., 2008). In the process of synthesis of Aliskiren, the optically active compound ethyl (2S, 4E)-5-chloro-2-isopropylpent-4-enoate, (2 in Fig 2), is a key intermediate. In order to obtain the compound (2), we used (R)-(-)camphorsultam as a chiral supplementary agent (Fig. 2). Thus, the title compound, (1), was prepared by reacting isovaleryl chloride with (R)-(-)camphorsultam.

The molecular structure of (1) is illustrated in Fig. 1. The five-membered ring (C4, C5, C10, N1, S1) shows nearly a C5β-envelope conformation, with the atom C5 deviating from the plane C4/C10/N1/S1 by 0.459 (4) Å. The plane formed by atom C2, C3, O3 and N1, have a dihedral angle of 19.6 (2)° with the aforementioned plane. In contrast, in the other independent molecule, the five-membered ring(C4', C5', C10', N1', S1') is close to a C10α-envelope conformation, with the atom C10 deviating from the plane C4'/C5'/N1'/S1' by 0.425 (4) Å. The plane (C2', C3', O3', N1') forms a dihedral angle of 23.9 (2)° with the aforementioned plane. Besides, there exist different bond lengths in the two independent molecules. The bond lengths of C1—C2 (1.508 Å), C1—C11 (1.524 Å) and C1—C12 (1.502 Å) are obviously longer than that of C1'-C2' (1.475 Å), C1'-C11' (1.508 Å) and C1'-C12' (1.476 Å), respectively.

In the crystal packing, there are two different intermolecular hydrogen bonds C—H···O (Table 1). The difference in the intermolecular hydrogen bonding interactions most possibly resulted in their slightly different bond lenghths and molecular conformations.

Related literature top

For the properties of the new renin inhibitor Aliskiren, see Mariano et al. (2008).

Experimental top

In a 250 ml bottomed flask was added camphorsultam(19 g, 88 mmol), toluene(100 ml), anhydrous triethylamine(16 ml, 110 mmol) and 4-dimethylaminopyridine(1.1 g, 10 mmol). The mixture was cooled to 273 K and then 12 ml of isovaleryl chloride were dripped in twenty minutes. After the addition, the mixture was stirred at 298 K until the TLC test showed that the reaction is complete. A solution of 13 ml of 36% hydrochloride acid in 19 ml of water was added at 298 K. The organic layers were separated and the aqueous layer was extracted for three times with 60 ml of dichloromethane. The combined organic layers were washed with water and concertrated to residue under vacuum, obtainning 26.7 g colourless crystal title compound.(yield 94%, m.p. 403–406 K). Since the crystal product was not found to be suitable for X-ray diffraction studies, a few crystals were dissolved in toluene, which was allowed to evaporate slowly to give colourless crystals of (1) suitable for X-ray diffraction studies.

Refinement top

All H atoms were placed in calculated positions (C—H 0.96–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric part of (1) showing the atomic numbering and 30% probability displacement ellipsoids. H atoms omitted for clarity.
[Figure 2] Fig. 2. Preparation of the title compound.
(R)-(-)-N-Isovalerylcamphorsultam top
Crystal data top
C15H25NO3SDx = 1.268 Mg m3
Mr = 299.42Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41Cell parameters from 25 reflections
Hall symbol: P 4wθ = 12–18°
a = 7.9038 (7) ŵ = 0.21 mm1
c = 50.228 (8) ÅT = 293 K
V = 3137.8 (7) Å3Prism, colourless
Z = 80.30 × 0.30 × 0.20 mm
F(000) = 1296
Data collection top
Bruker SMART CCD area-detector
diffractometer
6416 independent reflections
Radiation source: fine-focus sealed tube5184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 105
Tmin = 0.939, Tmax = 0.959k = 1010
16320 measured reflectionsl = 6451
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.2775P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.38 e Å3
6416 reflectionsΔρmin = 0.19 e Å3
370 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0164 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2779 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (6)
Crystal data top
C15H25NO3SZ = 8
Mr = 299.42Mo Kα radiation
Tetragonal, P41µ = 0.21 mm1
a = 7.9038 (7) ÅT = 293 K
c = 50.228 (8) Å0.30 × 0.30 × 0.20 mm
V = 3137.8 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
6416 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5184 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.959Rint = 0.035
16320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.38 e Å3
S = 1.04Δρmin = 0.19 e Å3
6416 reflectionsAbsolute structure: Flack (1983), 2779 Friedel pairs
370 parametersAbsolute structure parameter: 0.03 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.78736 (8)0.43930 (9)0.123672 (15)0.04709 (19)
N10.9609 (3)0.3737 (3)0.14051 (4)0.0397 (5)
O10.7275 (3)0.5927 (3)0.13478 (6)0.0730 (7)
O20.8219 (3)0.4381 (3)0.09586 (5)0.0744 (7)
O31.2414 (2)0.3426 (3)0.14096 (5)0.0658 (6)
C11.3005 (4)0.6926 (4)0.13051 (7)0.0611 (9)
H11.39480.61840.12640.073*
C21.1411 (3)0.6024 (4)0.12208 (7)0.0560 (8)
H2A1.04410.67180.12660.067*
H2B1.14220.58810.10290.067*
C31.1225 (3)0.4323 (4)0.13503 (6)0.0458 (7)
C40.6596 (3)0.2646 (4)0.13288 (6)0.0463 (7)
H4A0.54840.30300.13840.056*
H4B0.64640.18790.11790.056*
C50.7480 (3)0.1757 (3)0.15582 (5)0.0393 (6)
C60.7286 (4)0.0169 (4)0.15733 (7)0.0569 (8)
H6A0.78910.07250.14300.068*
H6B0.61050.05010.15670.068*
C70.8086 (5)0.0579 (4)0.18471 (7)0.0669 (10)
H7A0.72870.11590.19620.080*
H7B0.90900.12750.18270.080*
C80.8533 (4)0.1164 (4)0.19581 (6)0.0542 (7)
H80.86470.11950.21520.065*
C91.0083 (3)0.1827 (4)0.18085 (6)0.0503 (7)
H9A1.10050.10180.18140.060*
H9B1.04660.28960.18810.060*
C100.9399 (3)0.2045 (3)0.15241 (5)0.0399 (6)
H100.98790.11790.14070.048*
C111.3250 (5)0.8542 (6)0.11444 (10)0.0983 (16)
H11A1.23360.93080.11800.147*
H11B1.32660.82740.09580.147*
H11C1.43020.90620.11930.147*
C121.3038 (6)0.7248 (6)0.15998 (8)0.1006 (15)
H12A1.20790.79250.16490.151*
H12B1.40600.78350.16460.151*
H12C1.29960.61890.16930.151*
C130.7110 (3)0.2307 (4)0.18487 (6)0.0493 (7)
C140.7325 (5)0.4182 (4)0.19173 (7)0.0672 (9)
H14A0.72420.43300.21070.101*
H14B0.64550.48280.18310.101*
H14C0.84130.45640.18570.101*
C150.5316 (4)0.1818 (5)0.19420 (7)0.0732 (10)
H15A0.52000.20630.21280.110*
H15B0.51370.06310.19130.110*
H15C0.44940.24550.18430.110*
S1'0.90760 (10)0.85718 (10)0.063320 (15)0.0537 (2)
N1'0.8697 (3)1.0177 (3)0.04197 (5)0.0450 (5)
O1'1.0708 (3)0.7888 (3)0.05816 (6)0.0780 (7)
O2'0.8725 (4)0.9123 (3)0.08967 (5)0.0811 (7)
O3'0.8603 (3)1.2988 (3)0.03577 (5)0.0767 (7)
C1'1.2148 (6)1.3263 (6)0.05161 (9)0.0902 (13)
H1'1.15891.43370.05470.108*
C2'1.0962 (5)1.1959 (5)0.06127 (8)0.0748 (10)
H2'11.06761.22120.07960.090*
H2'21.15371.08750.06110.090*
C3'0.9354 (4)1.1795 (4)0.04570 (7)0.0557 (7)
C4'0.7438 (4)0.7217 (4)0.05125 (6)0.0559 (8)
H4'10.78950.61140.04680.067*
H4'20.65690.70720.06470.067*
C5'0.6707 (4)0.8062 (3)0.02665 (6)0.0479 (7)
C6'0.4805 (4)0.7925 (4)0.02243 (8)0.0676 (9)
H6'10.41920.86020.03530.081*
H6'20.44290.67600.02370.081*
C7'0.4565 (5)0.8626 (5)0.00620 (8)0.0786 (11)
H7'10.40120.78030.01760.094*
H7'20.39050.96610.00610.094*
C8'0.6380 (5)0.8958 (4)0.01530 (7)0.0626 (9)
H8'0.65200.89770.03470.075*
C9'0.7020 (4)1.0534 (4)0.00152 (6)0.0580 (8)
H9'10.62541.14790.00410.070*
H9'20.81381.08450.00780.070*
C10'0.7064 (3)0.9970 (3)0.02803 (6)0.0454 (6)
H10'0.61641.05410.03800.054*
C11'1.3725 (5)1.3300 (7)0.06852 (10)0.1022 (15)
H11D1.34311.36030.08640.153*
H11E1.45011.41190.06150.153*
H11F1.42451.22030.06840.153*
C12'1.2521 (7)1.3223 (8)0.02283 (10)0.126 (2)
H12D1.34301.39910.01900.188*
H12E1.15321.35540.01300.188*
H12F1.28441.20980.01780.188*
C13'0.7403 (4)0.7537 (4)0.00121 (6)0.0556 (8)
C14'0.9302 (5)0.7688 (5)0.00515 (8)0.0767 (10)
H14D0.98610.67820.00400.115*
H14E0.96850.87520.00180.115*
H14F0.95600.76270.02380.115*
C15'0.6873 (6)0.5750 (4)0.00991 (8)0.0832 (12)
H15D0.72280.55600.02790.125*
H15E0.56660.56450.00880.125*
H15F0.73960.49300.00150.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0360 (3)0.0494 (4)0.0558 (5)0.0009 (3)0.0107 (3)0.0148 (3)
N10.0341 (10)0.0382 (11)0.0469 (14)0.0021 (8)0.0063 (9)0.0072 (9)
O10.0484 (12)0.0460 (12)0.125 (2)0.0105 (10)0.0056 (12)0.0090 (12)
O20.0679 (14)0.1078 (19)0.0475 (15)0.0144 (13)0.0120 (11)0.0301 (13)
O30.0346 (11)0.0669 (14)0.0960 (18)0.0048 (9)0.0010 (10)0.0235 (12)
C10.0448 (16)0.075 (2)0.064 (2)0.0131 (14)0.0073 (14)0.0119 (17)
C20.0432 (15)0.0512 (16)0.074 (2)0.0049 (12)0.0088 (15)0.0164 (15)
C30.0339 (13)0.0546 (16)0.0490 (18)0.0021 (11)0.0026 (12)0.0072 (13)
C40.0357 (13)0.0543 (16)0.0490 (18)0.0043 (11)0.0108 (11)0.0051 (13)
C50.0333 (12)0.0438 (14)0.0410 (16)0.0049 (10)0.0047 (10)0.0004 (11)
C60.0621 (19)0.0506 (17)0.058 (2)0.0120 (14)0.0044 (15)0.0027 (14)
C70.075 (2)0.063 (2)0.062 (2)0.0076 (16)0.0084 (18)0.0244 (16)
C80.0567 (18)0.069 (2)0.0372 (17)0.0042 (14)0.0091 (13)0.0158 (14)
C90.0427 (15)0.0565 (17)0.0517 (19)0.0021 (12)0.0108 (13)0.0132 (13)
C100.0367 (13)0.0385 (13)0.0446 (17)0.0037 (10)0.0038 (11)0.0055 (11)
C110.087 (3)0.096 (3)0.112 (4)0.048 (2)0.037 (2)0.045 (3)
C120.130 (4)0.111 (3)0.061 (3)0.049 (3)0.010 (2)0.007 (2)
C130.0422 (15)0.0645 (18)0.0414 (18)0.0051 (13)0.0004 (12)0.0017 (13)
C140.071 (2)0.075 (2)0.056 (2)0.0015 (16)0.0089 (17)0.0191 (17)
C150.0524 (19)0.106 (3)0.061 (2)0.0076 (18)0.0063 (16)0.008 (2)
S1'0.0649 (5)0.0533 (4)0.0429 (4)0.0029 (3)0.0098 (4)0.0148 (3)
N1'0.0519 (13)0.0444 (13)0.0387 (13)0.0029 (10)0.0057 (10)0.0107 (10)
O1'0.0608 (14)0.0726 (15)0.101 (2)0.0171 (12)0.0151 (13)0.0223 (14)
O2'0.126 (2)0.0773 (16)0.0398 (14)0.0129 (15)0.0058 (13)0.0089 (12)
O3'0.112 (2)0.0461 (12)0.0723 (17)0.0019 (12)0.0297 (14)0.0058 (11)
C1'0.090 (3)0.103 (3)0.077 (3)0.022 (2)0.005 (2)0.003 (2)
C2'0.076 (2)0.080 (2)0.068 (2)0.0153 (19)0.0178 (19)0.016 (2)
C3'0.067 (2)0.0531 (18)0.0474 (19)0.0002 (15)0.0044 (15)0.0064 (14)
C4'0.068 (2)0.0507 (16)0.049 (2)0.0011 (14)0.0020 (14)0.0163 (14)
C5'0.0565 (17)0.0448 (15)0.0424 (17)0.0019 (12)0.0045 (13)0.0096 (12)
C6'0.067 (2)0.067 (2)0.069 (2)0.0115 (16)0.0078 (18)0.0065 (17)
C7'0.090 (3)0.066 (2)0.079 (3)0.0008 (19)0.038 (2)0.0051 (19)
C8'0.094 (3)0.0547 (18)0.0389 (18)0.0014 (16)0.0167 (16)0.0085 (14)
C9'0.075 (2)0.0490 (16)0.050 (2)0.0049 (14)0.0130 (15)0.0122 (14)
C10'0.0495 (15)0.0440 (14)0.0426 (17)0.0098 (11)0.0004 (12)0.0035 (12)
C11'0.071 (3)0.133 (4)0.103 (4)0.025 (2)0.009 (2)0.010 (3)
C12'0.139 (4)0.168 (5)0.069 (3)0.072 (4)0.025 (3)0.011 (3)
C13'0.081 (2)0.0451 (16)0.0402 (18)0.0032 (14)0.0020 (15)0.0020 (12)
C14'0.096 (3)0.081 (2)0.053 (2)0.024 (2)0.0205 (19)0.0012 (18)
C15'0.128 (3)0.0493 (19)0.072 (3)0.004 (2)0.010 (2)0.0041 (17)
Geometric parameters (Å, º) top
S1—O11.416 (2)S1'—O2'1.421 (3)
S1—O21.423 (2)S1'—O1'1.422 (2)
S1—N11.693 (2)S1'—N1'1.688 (2)
S1—C41.772 (3)S1'—C4'1.786 (3)
N1—C31.386 (3)N1'—C3'1.393 (4)
N1—C101.475 (3)N1'—C10'1.477 (3)
O3—C31.214 (3)O3'—C3'1.221 (4)
C1—C121.502 (5)C1'—C2'1.475 (5)
C1—C21.508 (4)C1'—C12'1.476 (6)
C1—C111.524 (5)C1'—C11'1.508 (6)
C1—H10.9700C1'—H1'0.9700
C2—C31.501 (4)C2'—C3'1.498 (5)
C2—H2A0.9700C2'—H2'10.9700
C2—H2B0.9700C2'—H2'20.9700
C4—C51.520 (4)C4'—C5'1.519 (4)
C4—H4A0.9700C4'—H4'10.9700
C4—H4B0.9700C4'—H4'20.9700
C5—C61.532 (4)C5'—C6'1.522 (4)
C5—C101.543 (3)C5'—C10'1.536 (4)
C5—C131.550 (4)C5'—C13'1.560 (4)
C6—C71.548 (5)C6'—C7'1.553 (5)
C6—H6A0.9700C6'—H6'10.9700
C6—H6B0.9700C6'—H6'20.9700
C7—C81.528 (5)C7'—C8'1.529 (5)
C7—H7A0.9700C7'—H7'10.9700
C7—H7B0.9700C7'—H7'20.9700
C8—C91.530 (4)C8'—C9'1.512 (4)
C8—C131.544 (4)C8'—C13'1.555 (4)
C8—H80.9800C8'—H8'0.9800
C9—C101.537 (4)C9'—C10'1.550 (4)
C9—H9A0.9700C9'—H9'10.9700
C9—H9B0.9700C9'—H9'20.9700
C10—H100.9800C10'—H10'0.9800
C11—H11A0.9599C11'—H11D0.9599
C11—H11B0.9599C11'—H11E0.9599
C11—H11C0.9599C11'—H11F0.9599
C12—H12A0.9599C12'—H12D0.9599
C12—H12B0.9599C12'—H12E0.9599
C12—H12C0.9599C12'—H12F0.9599
C13—C141.531 (4)C13'—C14'1.519 (5)
C13—C151.543 (4)C13'—C15'1.536 (4)
C14—H14A0.9599C14'—H14D0.9599
C14—H14B0.9599C14'—H14E0.9599
C14—H14C0.9599C14'—H14F0.9599
C15—H15A0.9599C15'—H15D0.9599
C15—H15B0.9599C15'—H15E0.9599
C15—H15C0.9599C15'—H15F0.9599
O1—S1—O2117.15 (16)O2'—S1'—O1'117.62 (17)
O1—S1—N1109.64 (13)O2'—S1'—N1'109.08 (14)
O2—S1—N1109.45 (13)O1'—S1'—N1'109.31 (14)
O1—S1—C4111.95 (15)O2'—S1'—C4'110.99 (16)
O2—S1—C4111.11 (14)O1'—S1'—C4'111.57 (16)
N1—S1—C495.32 (11)N1'—S1'—C4'96.10 (12)
C3—N1—C10119.2 (2)C3'—N1'—C10'119.4 (2)
C3—N1—S1123.05 (18)C3'—N1'—S1'122.6 (2)
C10—N1—S1112.89 (15)C10'—N1'—S1'111.92 (17)
C12—C1—C2111.8 (3)C2'—C1'—C12'115.7 (4)
C12—C1—C11112.2 (3)C2'—C1'—C11'110.7 (4)
C2—C1—C11110.7 (3)C12'—C1'—C11'112.8 (4)
C12—C1—H1107.3C2'—C1'—H1'105.6
C2—C1—H1107.3C12'—C1'—H1'105.6
C11—C1—H1107.3C11'—C1'—H1'105.6
C3—C2—C1112.6 (2)C1'—C2'—C3'115.3 (3)
C3—C2—H2A109.1C1'—C2'—H2'1108.4
C1—C2—H2A109.1C3'—C2'—H2'1108.4
C3—C2—H2B109.1C1'—C2'—H2'2108.4
C1—C2—H2B109.1C3'—C2'—H2'2108.4
H2A—C2—H2B107.8H2'1—C2'—H2'2107.5
O3—C3—N1118.0 (2)O3'—C3'—N1'118.2 (3)
O3—C3—C2123.6 (2)O3'—C3'—C2'124.0 (3)
N1—C3—C2118.4 (2)N1'—C3'—C2'117.8 (3)
C5—C4—S1107.21 (17)C5'—C4'—S1'106.76 (19)
C5—C4—H4A110.3C5'—C4'—H4'1110.4
S1—C4—H4A110.3S1'—C4'—H4'1110.4
C5—C4—H4B110.3C5'—C4'—H4'2110.4
S1—C4—H4B110.3S1'—C4'—H4'2110.4
H4A—C4—H4B108.5H4'1—C4'—H4'2108.6
C4—C5—C6116.8 (2)C4'—C5'—C6'117.3 (2)
C4—C5—C10107.4 (2)C4'—C5'—C10'109.0 (2)
C6—C5—C10104.5 (2)C6'—C5'—C10'104.9 (2)
C4—C5—C13119.8 (2)C4'—C5'—C13'118.6 (2)
C6—C5—C13102.3 (2)C6'—C5'—C13'101.8 (3)
C10—C5—C13104.4 (2)C10'—C5'—C13'103.7 (2)
C5—C6—C7102.2 (2)C5'—C6'—C7'103.0 (3)
C5—C6—H6A111.3C5'—C6'—H6'1111.2
C7—C6—H6A111.3C7'—C6'—H6'1111.2
C5—C6—H6B111.3C5'—C6'—H6'2111.2
C7—C6—H6B111.3C7'—C6'—H6'2111.2
H6A—C6—H6B109.2H6'1—C6'—H6'2109.1
C8—C7—C6103.3 (2)C8'—C7'—C6'102.9 (3)
C8—C7—H7A111.1C8'—C7'—H7'1111.2
C6—C7—H7A111.1C6'—C7'—H7'1111.2
C8—C7—H7B111.1C8'—C7'—H7'2111.2
C6—C7—H7B111.1C6'—C7'—H7'2111.2
H7A—C7—H7B109.1H7'1—C7'—H7'2109.1
C7—C8—C9108.3 (3)C9'—C8'—C7'108.6 (3)
C7—C8—C13103.3 (2)C9'—C8'—C13'102.3 (2)
C9—C8—C13102.0 (2)C7'—C8'—C13'103.2 (3)
C7—C8—H8114.0C9'—C8'—H8'113.9
C9—C8—H8114.0C7'—C8'—H8'113.9
C13—C8—H8114.0C13'—C8'—H8'113.9
C8—C9—C10102.3 (2)C8'—C9'—C10'102.1 (2)
C8—C9—H9A111.3C8'—C9'—H9'1111.4
C10—C9—H9A111.3C10'—C9'—H9'1111.4
C8—C9—H9B111.3C8'—C9'—H9'2111.4
C10—C9—H9B111.3C10'—C9'—H9'2111.4
H9A—C9—H9B109.2H9'1—C9'—H9'2109.2
N1—C10—C9116.0 (2)N1'—C10'—C5'106.9 (2)
N1—C10—C5106.83 (19)N1'—C10'—C9'116.2 (2)
C9—C10—C5103.1 (2)C5'—C10'—C9'103.6 (2)
N1—C10—H10110.2N1'—C10'—H10'109.9
C9—C10—H10110.2C5'—C10'—H10'109.9
C5—C10—H10110.2C9'—C10'—H10'109.9
C1—C11—H11A109.5C1'—C11'—H11D109.5
C1—C11—H11B109.5C1'—C11'—H11E109.5
H11A—C11—H11B109.5H11D—C11'—H11E109.5
C1—C11—H11C109.5C1'—C11'—H11F109.5
H11A—C11—H11C109.5H11D—C11'—H11F109.5
H11B—C11—H11C109.5H11E—C11'—H11F109.5
C1—C12—H12A109.5C1'—C12'—H12D109.5
C1—C12—H12B109.5C1'—C12'—H12E109.5
H12A—C12—H12B109.5H12D—C12'—H12E109.5
C1—C12—H12C109.5C1'—C12'—H12F109.5
H12A—C12—H12C109.5H12D—C12'—H12F109.5
H12B—C12—H12C109.5H12E—C12'—H12F109.5
C14—C13—C15106.0 (3)C14'—C13'—C15'107.7 (3)
C14—C13—C8113.9 (2)C14'—C13'—C8'113.4 (3)
C15—C13—C8114.5 (3)C15'—C13'—C8'113.1 (3)
C14—C13—C5117.5 (2)C14'—C13'—C5'116.4 (3)
C15—C13—C5112.9 (2)C15'—C13'—C5'113.8 (3)
C8—C13—C591.9 (2)C8'—C13'—C5'91.9 (2)
C13—C14—H14A109.5C13'—C14'—H14D109.5
C13—C14—H14B109.5C13'—C14'—H14E109.5
H14A—C14—H14B109.5H14D—C14'—H14E109.5
C13—C14—H14C109.5C13'—C14'—H14F109.5
H14A—C14—H14C109.5H14D—C14'—H14F109.5
H14B—C14—H14C109.5H14E—C14'—H14F109.5
C13—C15—H15A109.5C13'—C15'—H15D109.5
C13—C15—H15B109.5C13'—C15'—H15E109.5
H15A—C15—H15B109.5H15D—C15'—H15E109.5
C13—C15—H15C109.5C13'—C15'—H15F109.5
H15A—C15—H15C109.5H15D—C15'—H15F109.5
H15B—C15—H15C109.5H15E—C15'—H15F109.5
O1—S1—N1—C384.0 (2)O2'—S1'—N1'—C3'50.2 (3)
O2—S1—N1—C345.8 (3)O1'—S1'—N1'—C3'79.7 (3)
C4—S1—N1—C3160.5 (2)C4'—S1'—N1'—C3'164.9 (3)
O1—S1—N1—C10121.1 (2)O2'—S1'—N1'—C10'102.0 (2)
O2—S1—N1—C10109.1 (2)O1'—S1'—N1'—C10'128.1 (2)
C4—S1—N1—C105.5 (2)C4'—S1'—N1'—C10'12.7 (2)
C12—C1—C2—C361.0 (4)C12'—C1'—C2'—C3'49.4 (6)
C11—C1—C2—C3173.1 (3)C11'—C1'—C2'—C3'179.3 (4)
C10—N1—C3—O31.8 (4)C10'—N1'—C3'—O3'4.5 (4)
S1—N1—C3—O3155.3 (2)S1'—N1'—C3'—O3'154.8 (3)
C10—N1—C3—C2178.0 (3)C10'—N1'—C3'—C2'176.6 (3)
S1—N1—C3—C224.5 (4)S1'—N1'—C3'—C2'26.4 (4)
C1—C2—C3—O332.1 (5)C1'—C2'—C3'—O3'36.2 (6)
C1—C2—C3—N1148.1 (3)C1'—C2'—C3'—N1'142.5 (4)
O1—S1—C4—C599.1 (2)O2'—S1'—C4'—C5'119.9 (2)
O2—S1—C4—C5127.8 (2)O1'—S1'—C4'—C5'106.8 (2)
N1—S1—C4—C514.6 (2)N1'—S1'—C4'—C5'6.7 (2)
S1—C4—C5—C6146.5 (2)S1'—C4'—C5'—C6'142.3 (3)
S1—C4—C5—C1029.6 (3)S1'—C4'—C5'—C10'23.4 (3)
S1—C4—C5—C1389.1 (2)S1'—C4'—C5'—C13'94.8 (3)
C4—C5—C6—C7171.6 (3)C4'—C5'—C6'—C7'170.4 (3)
C10—C5—C6—C769.9 (3)C10'—C5'—C6'—C7'68.6 (3)
C13—C5—C6—C738.7 (3)C13'—C5'—C6'—C7'39.3 (3)
C5—C6—C7—C83.2 (3)C5'—C6'—C7'—C8'3.8 (3)
C6—C7—C8—C974.1 (3)C6'—C7'—C8'—C9'74.8 (3)
C6—C7—C8—C1333.6 (3)C6'—C7'—C8'—C13'33.2 (3)
C7—C8—C9—C1065.4 (3)C7'—C8'—C9'—C10'65.7 (3)
C13—C8—C9—C1043.2 (3)C13'—C8'—C9'—C10'42.9 (3)
C3—N1—C10—C966.2 (3)C3'—N1'—C10'—C5'179.0 (3)
S1—N1—C10—C9137.8 (2)S1'—N1'—C10'—C5'27.8 (3)
C3—N1—C10—C5179.5 (2)C3'—N1'—C10'—C9'63.9 (3)
S1—N1—C10—C523.5 (3)S1'—N1'—C10'—C9'142.9 (2)
C8—C9—C10—N1125.2 (2)C4'—C5'—C10'—N1'32.4 (3)
C8—C9—C10—C58.9 (3)C6'—C5'—C10'—N1'158.8 (2)
C4—C5—C10—N133.5 (3)C13'—C5'—C10'—N1'94.8 (3)
C6—C5—C10—N1158.2 (2)C4'—C5'—C10'—C9'155.7 (2)
C13—C5—C10—N194.7 (2)C6'—C5'—C10'—C9'78.0 (3)
C4—C5—C10—C9156.2 (2)C13'—C5'—C10'—C9'28.5 (3)
C6—C5—C10—C979.1 (3)C8'—C9'—C10'—N1'125.4 (3)
C13—C5—C10—C928.0 (3)C8'—C9'—C10'—C5'8.5 (3)
C7—C8—C13—C14176.2 (3)C9'—C8'—C13'—C14'62.0 (4)
C9—C8—C13—C1463.8 (3)C7'—C8'—C13'—C14'174.7 (3)
C7—C8—C13—C1561.5 (3)C9'—C8'—C13'—C15'174.9 (3)
C9—C8—C13—C15173.9 (3)C7'—C8'—C13'—C15'62.2 (4)
C7—C8—C13—C554.8 (3)C9'—C8'—C13'—C5'57.9 (3)
C9—C8—C13—C557.6 (2)C7'—C8'—C13'—C5'54.8 (3)
C4—C5—C13—C1453.7 (3)C4'—C5'—C13'—C14'55.3 (4)
C6—C5—C13—C14175.3 (3)C6'—C5'—C13'—C14'174.4 (3)
C10—C5—C13—C1466.5 (3)C10'—C5'—C13'—C14'65.6 (3)
C4—C5—C13—C1570.3 (3)C4'—C5'—C13'—C15'71.0 (4)
C6—C5—C13—C1560.8 (3)C6'—C5'—C13'—C15'59.3 (3)
C10—C5—C13—C15169.5 (3)C10'—C5'—C13'—C15'168.1 (3)
C4—C5—C13—C8172.1 (2)C4'—C5'—C13'—C8'172.7 (3)
C6—C5—C13—C856.9 (2)C6'—C5'—C13'—C8'57.0 (3)
C10—C5—C13—C851.8 (2)C10'—C5'—C13'—C8'51.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3i0.972.453.387 (3)162
C15—H15F···O3ii0.962.493.450 (5)173
Symmetry codes: (i) x1, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H25NO3S
Mr299.42
Crystal system, space groupTetragonal, P41
Temperature (K)293
a, c (Å)7.9038 (7), 50.228 (8)
V3)3137.8 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.939, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
16320, 6416, 5184
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.109, 1.04
No. of reflections6416
No. of parameters370
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.19
Absolute structureFlack (1983), 2779 Friedel pairs
Absolute structure parameter0.03 (6)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3i0.972.453.387 (3)162.3
C15'—H15F···O3'ii0.962.493.450 (5)173.2
Symmetry codes: (i) x1, y, z; (ii) x, y1, z.
 

Acknowledgements

We acknowledge the support from the Opening Foundation of the Biochemical Engineering Key Discipline (2009), Zhejiang, China.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMariano, S., Cristiano, G., Ennio, G. & Alessandro, F. (2008). Patent WO2008006394 A1.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds