organic compounds
2,3,5,6-Tetramethoxypiperazine-1,4-dicarbaldehyde
aDepartment of Chemistry, Imam Hossein University, Tehran, Iran
*Correspondence e-mail: amir.tahery1@gmail.com
The 10H18N2O6, contains two halves of two independent centrosymmetric molecules with almost identical conformations. Weak intermolecular C—H⋯O hydrogen bonds consolidate the crystal packing.
of the title compound, CRelated literature
For details of the synthesis, see: Ferguson (1968a,b). For a closely related compound with acetyl substituents, see: Vedachalam et al. (1991). For anomeric interactions, see: Reed & Schleyer (1988). For glycoside structures, see: Schleifer et al. (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809035259/cv2606sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809035259/cv2606Isup2.hkl
1,4-Diformyltetrachloropiperazine (7.04 g,0.04 mol) (Ferguson, 1968a,b) were mixed with barium carbonate (78 g) and absolute methanol (32 ml, 0.79 mol) were added to the mixture and heated at 313 K for 3 h with stirring. The barium carbonate was filtered off and the methanol solution evaporated. The solid residue was extracted by 20 ml of hot chloroform and the extract evaporated to give white precipitation and washed with a little cold water and dried in oven by 303 K of temperature affording 1.83 g (70% yield) of (I). This solid was crystallized by hot mixture of methanol and benzene (m.p. 469 K). 1HNMR (CDCl3): δH 8.47 (s, 2H, CH), 5.29 (d, 2H, CH), 4.82 (d, 2H, CH), 3.21 (m, 12H,CH). 13C NMR (CDCl3): δC165 (2CH), 83.4 (2CH), 79.1(2CH), 54.5 (6CH), 56.2 (6CH).
All H atoms were geometrically positioned (C—H 0.93 - 0.98 Å) and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C).
Data collection: SMART (Bruker, 1998); cell
SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C10H18N2O6 | F(000) = 560 |
Mr = 262.26 | Dx = 1.415 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1254 reflections |
a = 14.331 (4) Å | θ = 2–25° |
b = 6.6044 (18) Å | µ = 0.12 mm−1 |
c = 14.332 (4) Å | T = 120 K |
β = 114.800 (3)° | Needle, colourless |
V = 1231.4 (6) Å3 | 0.5 × 0.05 × 0.05 mm |
Z = 4 |
Bruker SMART 1000 CCD area-detector diffractometer | 2958 independent reflections |
Radiation source: fine-focus sealed tube | 2242 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scans | θmax = 28.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | h = −18→18 |
Tmin = 0.980, Tmax = 0.995 | k = −8→8 |
12344 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0108P)2 + 2.6266P] where P = (Fo2 + 2Fc2)/3 |
2958 reflections | (Δ/σ)max = 0.001 |
168 parameters | Δρmax = 0.56 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C10H18N2O6 | V = 1231.4 (6) Å3 |
Mr = 262.26 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 14.331 (4) Å | µ = 0.12 mm−1 |
b = 6.6044 (18) Å | T = 120 K |
c = 14.332 (4) Å | 0.5 × 0.05 × 0.05 mm |
β = 114.800 (3)° |
Bruker SMART 1000 CCD area-detector diffractometer | 2958 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | 2242 reflections with I > 2σ(I) |
Tmin = 0.980, Tmax = 0.995 | Rint = 0.037 |
12344 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.56 e Å−3 |
2958 reflections | Δρmin = −0.30 e Å−3 |
168 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.67186 (15) | 0.1494 (3) | 0.66884 (16) | 0.0354 (5) | |
O2 | 0.62334 (13) | 0.7282 (3) | 0.49476 (14) | 0.0279 (4) | |
O3 | 0.55403 (13) | 0.3233 (3) | 0.39458 (14) | 0.0291 (4) | |
O4 | 1.17420 (15) | 0.1502 (3) | 0.66699 (16) | 0.0354 (5) | |
O5 | 0.99381 (14) | 0.7197 (3) | 0.62522 (15) | 0.0311 (5) | |
O6 | 0.89855 (13) | 0.3088 (3) | 0.55478 (15) | 0.0322 (5) | |
N1 | 0.59356 (15) | 0.4210 (3) | 0.56729 (16) | 0.0237 (5) | |
N2 | 1.06918 (15) | 0.4199 (4) | 0.59207 (17) | 0.0245 (5) | |
C1 | 0.58449 (18) | 0.6410 (4) | 0.5610 (2) | 0.0239 (5) | |
H1A | 0.6218 | 0.6977 | 0.6300 | 0.029* | |
C2 | 0.52907 (18) | 0.2971 (4) | 0.47925 (19) | 0.0245 (5) | |
H2A | 0.5365 | 0.1541 | 0.4993 | 0.029* | |
C3 | 0.66071 (19) | 0.3326 (4) | 0.6564 (2) | 0.0260 (6) | |
H3A | 0.7002 | 0.4165 | 0.7108 | 0.031* | |
C4 | 0.73438 (19) | 0.7406 (5) | 0.5418 (2) | 0.0332 (7) | |
H4A | 0.7577 | 0.7963 | 0.4934 | 0.050* | |
H4B | 0.7628 | 0.6077 | 0.5618 | 0.050* | |
H4C | 0.7563 | 0.8262 | 0.6013 | 0.050* | |
C5 | 0.6535 (2) | 0.2490 (5) | 0.4132 (2) | 0.0360 (7) | |
H5A | 0.6669 | 0.2731 | 0.3539 | 0.054* | |
H5B | 0.6565 | 0.1063 | 0.4268 | 0.054* | |
H5C | 0.7041 | 0.3176 | 0.4715 | 0.054* | |
C6 | 1.06031 (19) | 0.6398 (4) | 0.5843 (2) | 0.0259 (6) | |
H6A | 1.1287 | 0.6991 | 0.6214 | 0.031* | |
C7 | 0.98182 (18) | 0.2938 (4) | 0.5274 (2) | 0.0268 (6) | |
H7A | 1.0040 | 0.1522 | 0.5327 | 0.032* | |
C8 | 1.16039 (18) | 0.3332 (4) | 0.6578 (2) | 0.0259 (6) | |
H8A | 1.2143 | 0.4181 | 0.6972 | 0.031* | |
C9 | 1.0398 (2) | 0.7262 (5) | 0.7347 (2) | 0.0384 (7) | |
H9A | 0.9897 | 0.7693 | 0.7587 | 0.058* | |
H9B | 1.0962 | 0.8199 | 0.7579 | 0.058* | |
H9C | 1.0644 | 0.5939 | 0.7614 | 0.058* | |
C10 | 0.9185 (2) | 0.2250 (6) | 0.6521 (2) | 0.0412 (8) | |
H10A | 0.8587 | 0.2393 | 0.6657 | 0.062* | |
H10B | 0.9753 | 0.2948 | 0.7041 | 0.062* | |
H10C | 0.9351 | 0.0841 | 0.6526 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0309 (10) | 0.0386 (13) | 0.0360 (11) | 0.0059 (9) | 0.0134 (9) | 0.0068 (9) |
O2 | 0.0191 (8) | 0.0373 (11) | 0.0310 (10) | −0.0045 (8) | 0.0141 (7) | 0.0020 (8) |
O3 | 0.0198 (8) | 0.0421 (12) | 0.0274 (9) | 0.0021 (8) | 0.0119 (7) | −0.0010 (9) |
O4 | 0.0257 (9) | 0.0393 (13) | 0.0407 (12) | 0.0066 (9) | 0.0134 (9) | 0.0067 (10) |
O5 | 0.0205 (8) | 0.0430 (12) | 0.0334 (10) | 0.0052 (8) | 0.0148 (8) | −0.0060 (9) |
O6 | 0.0167 (8) | 0.0475 (13) | 0.0341 (10) | 0.0017 (8) | 0.0124 (8) | 0.0062 (9) |
N1 | 0.0180 (9) | 0.0285 (12) | 0.0258 (11) | −0.0011 (8) | 0.0103 (8) | 0.0003 (9) |
N2 | 0.0152 (9) | 0.0295 (12) | 0.0284 (11) | 0.0010 (8) | 0.0088 (8) | −0.0010 (9) |
C1 | 0.0184 (11) | 0.0290 (14) | 0.0252 (12) | −0.0023 (10) | 0.0099 (10) | −0.0007 (11) |
C2 | 0.0177 (11) | 0.0320 (15) | 0.0256 (12) | −0.0008 (10) | 0.0108 (10) | 0.0005 (11) |
C3 | 0.0184 (11) | 0.0350 (16) | 0.0260 (13) | 0.0011 (11) | 0.0107 (10) | 0.0025 (11) |
C4 | 0.0189 (12) | 0.0384 (17) | 0.0462 (17) | −0.0040 (11) | 0.0175 (12) | −0.0005 (14) |
C5 | 0.0220 (13) | 0.0527 (19) | 0.0379 (16) | 0.0055 (13) | 0.0172 (12) | −0.0032 (14) |
C6 | 0.0171 (11) | 0.0305 (15) | 0.0312 (14) | 0.0003 (10) | 0.0112 (10) | −0.0049 (11) |
C7 | 0.0172 (11) | 0.0332 (15) | 0.0313 (14) | 0.0010 (10) | 0.0113 (10) | −0.0033 (11) |
C8 | 0.0153 (11) | 0.0367 (16) | 0.0275 (13) | 0.0023 (10) | 0.0107 (10) | 0.0042 (12) |
C9 | 0.0395 (16) | 0.0463 (19) | 0.0335 (15) | 0.0073 (14) | 0.0193 (13) | −0.0043 (14) |
C10 | 0.0279 (14) | 0.056 (2) | 0.0452 (18) | 0.0047 (14) | 0.0203 (13) | 0.0170 (16) |
O1—C3 | 1.224 (3) | C2—H2A | 0.9800 |
O2—C1 | 1.409 (3) | C3—H3A | 0.9300 |
O2—C4 | 1.447 (3) | C4—H4A | 0.9600 |
O3—C2 | 1.412 (3) | C4—H4B | 0.9600 |
O3—C5 | 1.423 (3) | C4—H4C | 0.9600 |
O4—C8 | 1.223 (3) | C5—H5A | 0.9600 |
O5—C6 | 1.414 (3) | C5—H5B | 0.9600 |
O5—C9 | 1.425 (3) | C5—H5C | 0.9600 |
O6—C7 | 1.408 (3) | C6—C7ii | 1.519 (4) |
O6—C10 | 1.414 (3) | C6—H6A | 0.9800 |
N1—C3 | 1.367 (3) | C7—C6ii | 1.519 (4) |
N1—C1 | 1.458 (4) | C7—H7A | 0.9800 |
N1—C2 | 1.462 (3) | C8—H8A | 0.9300 |
N2—C8 | 1.375 (3) | C9—H9A | 0.9600 |
N2—C6 | 1.458 (4) | C9—H9B | 0.9600 |
N2—C7 | 1.465 (3) | C9—H9C | 0.9600 |
C1—C2i | 1.537 (3) | C10—H10A | 0.9600 |
C1—H1A | 0.9800 | C10—H10B | 0.9600 |
C2—C1i | 1.537 (3) | C10—H10C | 0.9600 |
C1—O2—C4 | 112.2 (2) | O3—C5—H5B | 109.5 |
C2—O3—C5 | 113.0 (2) | H5A—C5—H5B | 109.5 |
C6—O5—C9 | 112.8 (2) | O3—C5—H5C | 109.5 |
C7—O6—C10 | 113.8 (2) | H5A—C5—H5C | 109.5 |
C3—N1—C1 | 119.6 (2) | H5B—C5—H5C | 109.5 |
C3—N1—C2 | 120.6 (2) | O5—C6—N2 | 113.1 (2) |
C1—N1—C2 | 119.8 (2) | O5—C6—C7ii | 106.9 (2) |
C8—N2—C6 | 119.6 (2) | N2—C6—C7ii | 110.5 (2) |
C8—N2—C7 | 120.7 (2) | O5—C6—H6A | 108.7 |
C6—N2—C7 | 119.6 (2) | N2—C6—H6A | 108.7 |
O2—C1—N1 | 113.5 (2) | C7ii—C6—H6A | 108.7 |
O2—C1—C2i | 107.1 (2) | O6—C7—N2 | 112.5 (2) |
N1—C1—C2i | 109.9 (2) | O6—C7—C6ii | 105.4 (2) |
O2—C1—H1A | 108.7 | N2—C7—C6ii | 111.1 (2) |
N1—C1—H1A | 108.7 | O6—C7—H7A | 109.3 |
C2i—C1—H1A | 108.7 | N2—C7—H7A | 109.3 |
O3—C2—N1 | 112.1 (2) | C6ii—C7—H7A | 109.3 |
O3—C2—C1i | 104.8 (2) | O4—C8—N2 | 123.4 (3) |
N1—C2—C1i | 111.2 (2) | O4—C8—H8A | 118.3 |
O3—C2—H2A | 109.5 | N2—C8—H8A | 118.3 |
N1—C2—H2A | 109.5 | O5—C9—H9A | 109.5 |
C1i—C2—H2A | 109.5 | O5—C9—H9B | 109.5 |
O1—C3—N1 | 123.8 (3) | H9A—C9—H9B | 109.5 |
O1—C3—H3A | 118.1 | O5—C9—H9C | 109.5 |
N1—C3—H3A | 118.1 | H9A—C9—H9C | 109.5 |
O2—C4—H4A | 109.5 | H9B—C9—H9C | 109.5 |
O2—C4—H4B | 109.5 | O6—C10—H10A | 109.5 |
H4A—C4—H4B | 109.5 | O6—C10—H10B | 109.5 |
O2—C4—H4C | 109.5 | H10A—C10—H10B | 109.5 |
H4A—C4—H4C | 109.5 | O6—C10—H10C | 109.5 |
H4B—C4—H4C | 109.5 | H10A—C10—H10C | 109.5 |
O3—C5—H5A | 109.5 | H10B—C10—H10C | 109.5 |
C4—O2—C1—N1 | −78.1 (3) | C9—O5—C6—N2 | 77.0 (3) |
C4—O2—C1—C2i | 160.4 (2) | C9—O5—C6—C7ii | −161.1 (2) |
C3—N1—C1—O2 | 110.9 (3) | C8—N2—C6—O5 | −111.3 (2) |
C2—N1—C1—O2 | −70.5 (3) | C7—N2—C6—O5 | 70.6 (3) |
C3—N1—C1—C2i | −129.1 (2) | C8—N2—C6—C7ii | 128.9 (2) |
C2—N1—C1—C2i | 49.4 (3) | C7—N2—C6—C7ii | −49.1 (3) |
C5—O3—C2—N1 | 66.7 (3) | C10—O6—C7—N2 | −67.6 (3) |
C5—O3—C2—C1i | −172.6 (2) | C10—O6—C7—C6ii | 171.2 (3) |
C3—N1—C2—O3 | −114.5 (3) | C8—N2—C7—O6 | 113.5 (3) |
C1—N1—C2—O3 | 67.0 (3) | C6—N2—C7—O6 | −68.5 (3) |
C3—N1—C2—C1i | 128.5 (2) | C8—N2—C7—C6ii | −128.7 (2) |
C1—N1—C2—C1i | −50.0 (3) | C6—N2—C7—C6ii | 49.4 (3) |
C1—N1—C3—O1 | 178.7 (2) | C6—N2—C8—O4 | −178.6 (2) |
C2—N1—C3—O1 | 0.2 (4) | C7—N2—C8—O4 | −0.5 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5C···O6 | 0.96 | 2.53 | 3.260 (4) | 133 |
C3—H3A···O1iii | 0.93 | 2.46 | 3.371 (3) | 167 |
C8—H8A···O4iv | 0.93 | 2.47 | 3.364 (4) | 163 |
C10—H10B···O3v | 0.96 | 2.60 | 3.208 (3) | 122 |
Symmetry codes: (iii) −x+3/2, y+1/2, −z+3/2; (iv) −x+5/2, y+1/2, −z+3/2; (v) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H18N2O6 |
Mr | 262.26 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 14.331 (4), 6.6044 (18), 14.332 (4) |
β (°) | 114.800 (3) |
V (Å3) | 1231.4 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.5 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1998) |
Tmin, Tmax | 0.980, 0.995 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12344, 2958, 2242 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.127, 1.00 |
No. of reflections | 2958 |
No. of parameters | 168 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.30 |
Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5C···O6 | 0.96 | 2.53 | 3.260 (4) | 133 |
C3—H3A···O1i | 0.93 | 2.46 | 3.371 (3) | 167 |
C8—H8A···O4ii | 0.93 | 2.47 | 3.364 (4) | 163 |
C10—H10B···O3iii | 0.96 | 2.60 | 3.208 (3) | 122 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+5/2, y+1/2, −z+3/2; (iii) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
We thank the Chemistry Group of Imam Hossain University for their cooperation.
References
Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ferguson, A. N. (1968a). US Patent 3 369 020. Google Scholar
Ferguson, A. N. (1968b). US Patent 3 365 454. Google Scholar
Reed, A. E. & Schleyer, P. V. R. (1988). Inorg. Chem. 27, 3969–3987. CrossRef CAS Web of Science Google Scholar
Schleifer, L., Senderowitz, H., Aped, P., Tartakovsky, E. & Fuchs, B. (1990). Carbohydr. Res. 206, 21–39. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vedachalam, M., Ramakrishnan, V. T., Boyer, J. H., Dagley, I. J., Nelson, K. A., Adolph, H. G., Gilardi, R., George, C. & Anderson, J. L. F. (1991). J. Org. Chem. 56, 3413–3419. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The molecule of 1,4-diformyl-2,3,5,6-tetra-methoxypiperazine (Ferguson,1968a, b) (I), contains two formamyl groups in the two contrary-sides of the six-membered ring and four methoxy groups in the same axial situations. There are four asymmetric carbon atoms, S, S and R, R configuration which are mirror images of each other and diastereoisomer. The skeleton is symmetric by a central symmetry. The crystal contains two halves of two independent centrosymmetric molecules with almost identical conformations, which are comparable with similar molecule with acetyl substitutions (Vedachalam et al., 1991).
Despite the presence of six O and two N atoms carrying lone-pair electrons potentially are available for hydrogen-bond formation, there are, in fact, no powerful intramolecular C—H···N or C—H···O hydrogen bonds, rather some week C—H···O intermolecular interactions are observed (Table 1, Fig. 2).
The Properties of the anomeric effect in the infected system, nO→σ*C—N interactions are recognizable (Reed & Schleyer, 1988), The O—C bond is shorter than the C—N bond and the stability of gauche (axial) forms is definitely more than anti (equatorial) ones (Figure 1). This electron transfer results in lengthening the exocyclic anomeric C—O bonds, in the endocyclic contraction of the C—N bonds by increasing its double-bond character in the opening of the O—C—N angle as compared with its normal tetrahedral value. It can be considered that aa, ag and gg conformations of the C—O—C—N—C moieties, where a = anti (antiperiplanar) and g = gauche (synclinal) which aa and ag refer to equatorial and gg to axial. All of the Methoxy groups are in the gg conformations, comparable with gg in glycoside conformations that are more stable than aa, equatorial conformations (Schleifer et al., 1990). The acetyl groups as substitutions select axial positions than equatorials (Vedachalam et al., 1991).
In (I) via resonation of N-lone-pairs with pi-electrons of the carbonyl double-bond, N-pyramidalities (about 360°) are larger than natural forms (about 320°) at the same of molecule with acetyl substitutions (Vedachalam et al., 1991).