organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,5,6-Tetra­meth­oxy­piperazine-1,4-dicarbaldehyde

aDepartment of Chemistry, Imam Hossein University, Tehran, Iran
*Correspondence e-mail: amir.tahery1@gmail.com

(Received 24 August 2009; accepted 1 September 2009; online 5 September 2009)

The asymmetric unit of the title compound, C10H18N2O6, contains two halves of two independent centrosymmetric mol­ecules with almost identical conformations. Weak inter­molecular C—H⋯O hydrogen bonds consolidate the crystal packing.

Related literature

For details of the synthesis, see: Ferguson (1968a[Ferguson, A. N. (1968a). US Patent 3 369 020.],b[Ferguson, A. N. (1968b). US Patent 3 365 454.]). For a closely related compound with acetyl substituents, see: Vedachalam et al. (1991[Vedachalam, M., Ramakrishnan, V. T., Boyer, J. H., Dagley, I. J., Nelson, K. A., Adolph, H. G., Gilardi, R., George, C. & Anderson, J. L. F. (1991). J. Org. Chem. 56, 3413-3419.]). For anomeric inter­actions, see: Reed & Schleyer (1988[Reed, A. E. & Schleyer, P. V. R. (1988). Inorg. Chem. 27, 3969-3987.]). For glycoside structures, see: Schleifer et al. (1990[Schleifer, L., Senderowitz, H., Aped, P., Tartakovsky, E. & Fuchs, B. (1990). Carbohydr. Res. 206, 21-39.]).

[Scheme 1]

Experimental

Crystal data
  • C10H18N2O6

  • Mr = 262.26

  • Monoclinic, P 21 /n

  • a = 14.331 (4) Å

  • b = 6.6044 (18) Å

  • c = 14.332 (4) Å

  • β = 114.800 (3)°

  • V = 1231.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 K

  • 0.5 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.995

  • 12344 measured reflections

  • 2958 independent reflections

  • 2242 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.127

  • S = 1.00

  • 2958 reflections

  • 168 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5C⋯O6 0.96 2.53 3.260 (4) 133
C3—H3A⋯O1i 0.93 2.46 3.371 (3) 167
C8—H8A⋯O4ii 0.93 2.47 3.364 (4) 163
C10—H10B⋯O3iii 0.96 2.60 3.208 (3) 122
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecule of 1,4-diformyl-2,3,5,6-tetra-methoxypiperazine (Ferguson,1968a, b) (I), contains two formamyl groups in the two contrary-sides of the six-membered ring and four methoxy groups in the same axial situations. There are four asymmetric carbon atoms, S, S and R, R configuration which are mirror images of each other and diastereoisomer. The skeleton is symmetric by a central symmetry. The crystal contains two halves of two independent centrosymmetric molecules with almost identical conformations, which are comparable with similar molecule with acetyl substitutions (Vedachalam et al., 1991).

Despite the presence of six O and two N atoms carrying lone-pair electrons potentially are available for hydrogen-bond formation, there are, in fact, no powerful intramolecular C—H···N or C—H···O hydrogen bonds, rather some week C—H···O intermolecular interactions are observed (Table 1, Fig. 2).

The Properties of the anomeric effect in the infected system, nOσ*C—N interactions are recognizable (Reed & Schleyer, 1988), The O—C bond is shorter than the C—N bond and the stability of gauche (axial) forms is definitely more than anti (equatorial) ones (Figure 1). This electron transfer results in lengthening the exocyclic anomeric C—O bonds, in the endocyclic contraction of the C—N bonds by increasing its double-bond character in the opening of the O—C—N angle as compared with its normal tetrahedral value. It can be considered that aa, ag and gg conformations of the C—O—C—N—C moieties, where a = anti (antiperiplanar) and g = gauche (synclinal) which aa and ag refer to equatorial and gg to axial. All of the Methoxy groups are in the gg conformations, comparable with gg in glycoside conformations that are more stable than aa, equatorial conformations (Schleifer et al., 1990). The acetyl groups as substitutions select axial positions than equatorials (Vedachalam et al., 1991).

In (I) via resonation of N-lone-pairs with pi-electrons of the carbonyl double-bond, N-pyramidalities (about 360°) are larger than natural forms (about 320°) at the same of molecule with acetyl substitutions (Vedachalam et al., 1991).

Related literature top

For details of the synthesis, see: Ferguson (1968a,b). For a closely related compound with acetyl substituents, see: Vedachalam et al. (1991). For anomeric interactions, see: Reed & Schleyer (1988). For glycoside structures, see: Schleifer et al. (1990).

Experimental top

1,4-Diformyltetrachloropiperazine (7.04 g,0.04 mol) (Ferguson, 1968a,b) were mixed with barium carbonate (78 g) and absolute methanol (32 ml, 0.79 mol) were added to the mixture and heated at 313 K for 3 h with stirring. The barium carbonate was filtered off and the methanol solution evaporated. The solid residue was extracted by 20 ml of hot chloroform and the extract evaporated to give white precipitation and washed with a little cold water and dried in oven by 303 K of temperature affording 1.83 g (70% yield) of (I). This solid was crystallized by hot mixture of methanol and benzene (m.p. 469 K). 1HNMR (CDCl3): δH 8.47 (s, 2H, CH), 5.29 (d, 2H, CH), 4.82 (d, 2H, CH), 3.21 (m, 12H,CH). 13C NMR (CDCl3): δC165 (2CH), 83.4 (2CH), 79.1(2CH), 54.5 (6CH), 56.2 (6CH).

Refinement top

All H atoms were geometrically positioned (C—H 0.93 - 0.98 Å) and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Two independent molecules of (I) showing the atomic numbering and 50% probability displacement ellipsoids [symmetry codes: (A) 1 - x, 1 - y , 1 - z; (B) 2 - x , 1 - y , 1 - z]. H atoms omitted for clarity.
[Figure 2] Fig. 2. A portion of the crystal packing viewed along crystallographic axis b. Dashed lines denote hydrogen bonds.
2,3,5,6-Tetramethoxypiperazine-1,4-dicarbaldehyde top
Crystal data top
C10H18N2O6F(000) = 560
Mr = 262.26Dx = 1.415 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1254 reflections
a = 14.331 (4) Åθ = 2–25°
b = 6.6044 (18) ŵ = 0.12 mm1
c = 14.332 (4) ÅT = 120 K
β = 114.800 (3)°Needle, colourless
V = 1231.4 (6) Å30.5 × 0.05 × 0.05 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2958 independent reflections
Radiation source: fine-focus sealed tube2242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1818
Tmin = 0.980, Tmax = 0.995k = 88
12344 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0108P)2 + 2.6266P]
where P = (Fo2 + 2Fc2)/3
2958 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C10H18N2O6V = 1231.4 (6) Å3
Mr = 262.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.331 (4) ŵ = 0.12 mm1
b = 6.6044 (18) ÅT = 120 K
c = 14.332 (4) Å0.5 × 0.05 × 0.05 mm
β = 114.800 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2958 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
2242 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.995Rint = 0.037
12344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.00Δρmax = 0.56 e Å3
2958 reflectionsΔρmin = 0.30 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67186 (15)0.1494 (3)0.66884 (16)0.0354 (5)
O20.62334 (13)0.7282 (3)0.49476 (14)0.0279 (4)
O30.55403 (13)0.3233 (3)0.39458 (14)0.0291 (4)
O41.17420 (15)0.1502 (3)0.66699 (16)0.0354 (5)
O50.99381 (14)0.7197 (3)0.62522 (15)0.0311 (5)
O60.89855 (13)0.3088 (3)0.55478 (15)0.0322 (5)
N10.59356 (15)0.4210 (3)0.56729 (16)0.0237 (5)
N21.06918 (15)0.4199 (4)0.59207 (17)0.0245 (5)
C10.58449 (18)0.6410 (4)0.5610 (2)0.0239 (5)
H1A0.62180.69770.63000.029*
C20.52907 (18)0.2971 (4)0.47925 (19)0.0245 (5)
H2A0.53650.15410.49930.029*
C30.66071 (19)0.3326 (4)0.6564 (2)0.0260 (6)
H3A0.70020.41650.71080.031*
C40.73438 (19)0.7406 (5)0.5418 (2)0.0332 (7)
H4A0.75770.79630.49340.050*
H4B0.76280.60770.56180.050*
H4C0.75630.82620.60130.050*
C50.6535 (2)0.2490 (5)0.4132 (2)0.0360 (7)
H5A0.66690.27310.35390.054*
H5B0.65650.10630.42680.054*
H5C0.70410.31760.47150.054*
C61.06031 (19)0.6398 (4)0.5843 (2)0.0259 (6)
H6A1.12870.69910.62140.031*
C70.98182 (18)0.2938 (4)0.5274 (2)0.0268 (6)
H7A1.00400.15220.53270.032*
C81.16039 (18)0.3332 (4)0.6578 (2)0.0259 (6)
H8A1.21430.41810.69720.031*
C91.0398 (2)0.7262 (5)0.7347 (2)0.0384 (7)
H9A0.98970.76930.75870.058*
H9B1.09620.81990.75790.058*
H9C1.06440.59390.76140.058*
C100.9185 (2)0.2250 (6)0.6521 (2)0.0412 (8)
H10A0.85870.23930.66570.062*
H10B0.97530.29480.70410.062*
H10C0.93510.08410.65260.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0309 (10)0.0386 (13)0.0360 (11)0.0059 (9)0.0134 (9)0.0068 (9)
O20.0191 (8)0.0373 (11)0.0310 (10)0.0045 (8)0.0141 (7)0.0020 (8)
O30.0198 (8)0.0421 (12)0.0274 (9)0.0021 (8)0.0119 (7)0.0010 (9)
O40.0257 (9)0.0393 (13)0.0407 (12)0.0066 (9)0.0134 (9)0.0067 (10)
O50.0205 (8)0.0430 (12)0.0334 (10)0.0052 (8)0.0148 (8)0.0060 (9)
O60.0167 (8)0.0475 (13)0.0341 (10)0.0017 (8)0.0124 (8)0.0062 (9)
N10.0180 (9)0.0285 (12)0.0258 (11)0.0011 (8)0.0103 (8)0.0003 (9)
N20.0152 (9)0.0295 (12)0.0284 (11)0.0010 (8)0.0088 (8)0.0010 (9)
C10.0184 (11)0.0290 (14)0.0252 (12)0.0023 (10)0.0099 (10)0.0007 (11)
C20.0177 (11)0.0320 (15)0.0256 (12)0.0008 (10)0.0108 (10)0.0005 (11)
C30.0184 (11)0.0350 (16)0.0260 (13)0.0011 (11)0.0107 (10)0.0025 (11)
C40.0189 (12)0.0384 (17)0.0462 (17)0.0040 (11)0.0175 (12)0.0005 (14)
C50.0220 (13)0.0527 (19)0.0379 (16)0.0055 (13)0.0172 (12)0.0032 (14)
C60.0171 (11)0.0305 (15)0.0312 (14)0.0003 (10)0.0112 (10)0.0049 (11)
C70.0172 (11)0.0332 (15)0.0313 (14)0.0010 (10)0.0113 (10)0.0033 (11)
C80.0153 (11)0.0367 (16)0.0275 (13)0.0023 (10)0.0107 (10)0.0042 (12)
C90.0395 (16)0.0463 (19)0.0335 (15)0.0073 (14)0.0193 (13)0.0043 (14)
C100.0279 (14)0.056 (2)0.0452 (18)0.0047 (14)0.0203 (13)0.0170 (16)
Geometric parameters (Å, º) top
O1—C31.224 (3)C2—H2A0.9800
O2—C11.409 (3)C3—H3A0.9300
O2—C41.447 (3)C4—H4A0.9600
O3—C21.412 (3)C4—H4B0.9600
O3—C51.423 (3)C4—H4C0.9600
O4—C81.223 (3)C5—H5A0.9600
O5—C61.414 (3)C5—H5B0.9600
O5—C91.425 (3)C5—H5C0.9600
O6—C71.408 (3)C6—C7ii1.519 (4)
O6—C101.414 (3)C6—H6A0.9800
N1—C31.367 (3)C7—C6ii1.519 (4)
N1—C11.458 (4)C7—H7A0.9800
N1—C21.462 (3)C8—H8A0.9300
N2—C81.375 (3)C9—H9A0.9600
N2—C61.458 (4)C9—H9B0.9600
N2—C71.465 (3)C9—H9C0.9600
C1—C2i1.537 (3)C10—H10A0.9600
C1—H1A0.9800C10—H10B0.9600
C2—C1i1.537 (3)C10—H10C0.9600
C1—O2—C4112.2 (2)O3—C5—H5B109.5
C2—O3—C5113.0 (2)H5A—C5—H5B109.5
C6—O5—C9112.8 (2)O3—C5—H5C109.5
C7—O6—C10113.8 (2)H5A—C5—H5C109.5
C3—N1—C1119.6 (2)H5B—C5—H5C109.5
C3—N1—C2120.6 (2)O5—C6—N2113.1 (2)
C1—N1—C2119.8 (2)O5—C6—C7ii106.9 (2)
C8—N2—C6119.6 (2)N2—C6—C7ii110.5 (2)
C8—N2—C7120.7 (2)O5—C6—H6A108.7
C6—N2—C7119.6 (2)N2—C6—H6A108.7
O2—C1—N1113.5 (2)C7ii—C6—H6A108.7
O2—C1—C2i107.1 (2)O6—C7—N2112.5 (2)
N1—C1—C2i109.9 (2)O6—C7—C6ii105.4 (2)
O2—C1—H1A108.7N2—C7—C6ii111.1 (2)
N1—C1—H1A108.7O6—C7—H7A109.3
C2i—C1—H1A108.7N2—C7—H7A109.3
O3—C2—N1112.1 (2)C6ii—C7—H7A109.3
O3—C2—C1i104.8 (2)O4—C8—N2123.4 (3)
N1—C2—C1i111.2 (2)O4—C8—H8A118.3
O3—C2—H2A109.5N2—C8—H8A118.3
N1—C2—H2A109.5O5—C9—H9A109.5
C1i—C2—H2A109.5O5—C9—H9B109.5
O1—C3—N1123.8 (3)H9A—C9—H9B109.5
O1—C3—H3A118.1O5—C9—H9C109.5
N1—C3—H3A118.1H9A—C9—H9C109.5
O2—C4—H4A109.5H9B—C9—H9C109.5
O2—C4—H4B109.5O6—C10—H10A109.5
H4A—C4—H4B109.5O6—C10—H10B109.5
O2—C4—H4C109.5H10A—C10—H10B109.5
H4A—C4—H4C109.5O6—C10—H10C109.5
H4B—C4—H4C109.5H10A—C10—H10C109.5
O3—C5—H5A109.5H10B—C10—H10C109.5
C4—O2—C1—N178.1 (3)C9—O5—C6—N277.0 (3)
C4—O2—C1—C2i160.4 (2)C9—O5—C6—C7ii161.1 (2)
C3—N1—C1—O2110.9 (3)C8—N2—C6—O5111.3 (2)
C2—N1—C1—O270.5 (3)C7—N2—C6—O570.6 (3)
C3—N1—C1—C2i129.1 (2)C8—N2—C6—C7ii128.9 (2)
C2—N1—C1—C2i49.4 (3)C7—N2—C6—C7ii49.1 (3)
C5—O3—C2—N166.7 (3)C10—O6—C7—N267.6 (3)
C5—O3—C2—C1i172.6 (2)C10—O6—C7—C6ii171.2 (3)
C3—N1—C2—O3114.5 (3)C8—N2—C7—O6113.5 (3)
C1—N1—C2—O367.0 (3)C6—N2—C7—O668.5 (3)
C3—N1—C2—C1i128.5 (2)C8—N2—C7—C6ii128.7 (2)
C1—N1—C2—C1i50.0 (3)C6—N2—C7—C6ii49.4 (3)
C1—N1—C3—O1178.7 (2)C6—N2—C8—O4178.6 (2)
C2—N1—C3—O10.2 (4)C7—N2—C8—O40.5 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5C···O60.962.533.260 (4)133
C3—H3A···O1iii0.932.463.371 (3)167
C8—H8A···O4iv0.932.473.364 (4)163
C10—H10B···O3v0.962.603.208 (3)122
Symmetry codes: (iii) x+3/2, y+1/2, z+3/2; (iv) x+5/2, y+1/2, z+3/2; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H18N2O6
Mr262.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)14.331 (4), 6.6044 (18), 14.332 (4)
β (°) 114.800 (3)
V3)1231.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.5 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.980, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
12344, 2958, 2242
Rint0.037
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.127, 1.00
No. of reflections2958
No. of parameters168
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.30

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5C···O60.962.533.260 (4)133
C3—H3A···O1i0.932.463.371 (3)167
C8—H8A···O4ii0.932.473.364 (4)163
C10—H10B···O3iii0.962.603.208 (3)122
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+5/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Chemistry Group of Imam Hossain University for their cooperation.

References

First citationBruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerguson, A. N. (1968a). US Patent 3 369 020.  Google Scholar
First citationFerguson, A. N. (1968b). US Patent 3 365 454.  Google Scholar
First citationReed, A. E. & Schleyer, P. V. R. (1988). Inorg. Chem. 27, 3969–3987.  CrossRef CAS Web of Science Google Scholar
First citationSchleifer, L., Senderowitz, H., Aped, P., Tartakovsky, E. & Fuchs, B. (1990). Carbohydr. Res. 206, 21–39.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVedachalam, M., Ramakrishnan, V. T., Boyer, J. H., Dagley, I. J., Nelson, K. A., Adolph, H. G., Gilardi, R., George, C. & Anderson, J. L. F. (1991). J. Org. Chem. 56, 3413–3419.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds