organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(1,3,5,7-Tetra­oxo-1,2,3,5,6,7-hexa­hydro­pyrrolo[3,4-f]iso­indole-2,6-di­yl)di­acetic acid N,N-di­methyl­formamide disolvate

aCollege of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
*Correspondence e-mail: chhge@lnu.edu.cn

(Received 25 August 2009; accepted 1 September 2009; online 9 September 2009)

The asymmetric unit of the title compound, C14H8N2O8·2C3H7NO or L·2DMF (DMF = N,N-dimethyl­formamide), contains one half of the centrosymmetric mol­ecule L and one solvent mol­ecule, which is disordered between two orientations in a 0.555 (4):0.445 (4) ratio. Inter­molecular O—H⋯O hydrogen bonds link one L and two DMF mol­ecules into a centrosymmetric hydrogen-bonded cluster. The crystal packing is further stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For recent developments in the chemistry of naphthalene diimides, see Bhosale et al. (2008[Bhosale, S. V., Jani, C. H. & Langford, S. J. (2008). Chem. Soc. Rev. 37, 331-342.]). For pyromellitic diimides, see: Gabriel & Iverson (2002[Gabriel, G. J. & Iverson, B. L. (2002). J. Am. Chem. Soc. 124, 15174-15175.]); Ghosh & Ramakrishnan (2005[Ghosh, S. & Ramakrishnan, S. (2005). Angew. Chem. Int. Ed. 44, 5441-5447.]); Kimizuka et al. (1995[Kimizuka, N., Kawasaki, T., Hirata, K. & Kunitake, T. (1995). J. Am. Chem. Soc. 117, 6360-6361.]). For details of the synthesis, see Barooah et al. (2006[Barooah, N., Sarma, R. J. & Baruah, J. B. (2006). CrystEngComm, 8, 608-615.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8N2O8·2C3H7NO

  • Mr = 478.42

  • Monoclinic, P 21 /c

  • a = 7.7470 (15) Å

  • b = 9.3100 (19) Å

  • c = 16.334 (5) Å

  • β = 104.02 (3)°

  • V = 1143.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.973

  • 6227 measured reflections

  • 2236 independent reflections

  • 1910 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.06

  • 2236 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O5A 0.82 1.72 2.526 (2) 166
O4—H4B⋯O5B 0.82 1.70 2.496 (2) 162
C2—H2A⋯O3i 0.97 2.41 3.230 (2) 142
C6—H6⋯O1ii 0.93 2.50 3.414 (2) 166
C9—H9A⋯O2iii 0.96 2.57 3.432 (3) 149
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Interest in the derivatives of diimide such as pyromellitic diimides, naphthalene diimides, and perylene diimides has arisen because of their potential applications for supramolecular and new functional materials (Bhosale et al., 2008). There have been a number of studies investigating the host–guest chemistry about pyromellitic diimide (Gabriel & Iverson, 2002; Ghosh & Ramakrishnan, 2005; Kimizuka et al., 1995). Supramolecular host of L and inclusion compounds with aromatic guests have been described (Barooah et al., 2006). In this paper, we report the crystal structure of the title compound, obtained by the recrystallization in DMF-MeOH.

In the molecule L (=2,2'-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4- f]isoindole-2,6-diyl)diacetic acid), two acetic acid groups are placed on upper and lower sides of the rigid conjugate plane (Fig. 1). Intermolecular O—H···O hydrogen bonds (Table 1) link one L and two solvent molecules into centrosymmetric hydrogen-bonded cluster. The crystal packing is further stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For recent developments in the chemistry of naphthalene diimides, see Bhosale et al. (2008). For pyromellitic diimides, see: Gabriel & Iverson (2002); Ghosh & Ramakrishnan (2005); Kimizuka et al. (1995). For details of the synthesis, see Barooah et al. (2006).

Experimental top

2,2'-(1,3,5,7-Tetraoxo-5,7-dihydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetic acid was synthesized according to the literature (Barooah et al., 2006). N,N'-dimethylformamide (DMF) 5 ml was added into a solution of compound mentioned above 0.1 mmol in 20 ml MeOH. The resultant colourless solution was filtered. Crystals suitable for X-ray analysis were formed after three days at room temperature.

Refinement top

All H atoms were placed in calculated positions and included in a riding-model approximation, with C—H = 0.93 - 0.97 Å, O—H = 0.82 Å and Uiso(H)= 1.2-1.5 Ueq of the parent atom. The solvent molecule is disordered between two orientations with the occupancies refined to 0.555 (4) and 0.445 (4), respectively. The hydroxy H atom is also disordered between two positions - H3A and H4B - with the same occupancies, respectively.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of the title compound showing the hydrogen-bonded (dashed lines) claster, atomic numbering and 30% probabilty displacement ellipsoids. Unlabelled atoms are related to the labelled ones by symmetry element (1 - x, 2 - y, 1 - z). For the disordered atoms, only major parts are drawn.
2,2'-(1,3,5,7-Tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole- 2,6-diyl)diacetic acid N,N-dimethylformamide disolvate top
Crystal data top
C14H8N2O8·2C3H7NOF(000) = 500
Mr = 478.42Dx = 1.390 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 541 reflections
a = 7.7470 (15) Åθ = 2.5–22.7°
b = 9.3100 (19) ŵ = 0.11 mm1
c = 16.334 (5) ÅT = 293 K
β = 104.02 (3)°Block, colourless
V = 1143.0 (5) Å30.30 × 0.25 × 0.25 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2236 independent reflections
Radiation source: fine-focus sealed tube1910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.958, Tmax = 0.973k = 1110
6227 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.2565P]
where P = (Fo2 + 2Fc2)/3
2236 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C14H8N2O8·2C3H7NOV = 1143.0 (5) Å3
Mr = 478.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.7470 (15) ŵ = 0.11 mm1
b = 9.3100 (19) ÅT = 293 K
c = 16.334 (5) Å0.30 × 0.25 × 0.25 mm
β = 104.02 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2236 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1910 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.973Rint = 0.030
6227 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
2236 reflectionsΔρmin = 0.15 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O30.46550 (18)0.49571 (11)0.66856 (7)0.0615 (3)
H3A0.41390.52380.62140.061*0.555 (4)
O40.48981 (19)0.29416 (13)0.59801 (7)0.0689 (4)
H4B0.43570.34230.55790.069*0.445 (4)
O10.86755 (14)0.43154 (15)0.88375 (8)0.0638 (4)
O20.27767 (14)0.31116 (13)0.79491 (7)0.0573 (3)
N10.58016 (15)0.35733 (14)0.82137 (7)0.0451 (3)
C10.51315 (19)0.36686 (16)0.66427 (9)0.0457 (3)
C20.6117 (2)0.29280 (17)0.74458 (10)0.0504 (4)
H2A0.57590.19280.74220.060*
H2B0.73830.29560.74760.060*
C30.71166 (19)0.42013 (16)0.88520 (9)0.0447 (3)
C40.41265 (18)0.35918 (15)0.84052 (9)0.0429 (3)
C50.43776 (17)0.43160 (14)0.92473 (8)0.0388 (3)
C60.31300 (17)0.46298 (15)0.97165 (9)0.0410 (3)
H60.19330.43900.95310.049*
C70.61865 (17)0.46738 (15)0.95191 (8)0.0390 (3)
N20.09136 (18)0.56664 (15)0.40440 (9)0.0545 (4)
C100.2173 (2)0.5240 (2)0.46976 (11)0.0592 (4)
H10A0.26620.43300.46910.071*0.555 (4)
H10B0.25830.58490.51550.071*0.445 (4)
C90.0213 (3)0.4691 (2)0.33408 (13)0.0726 (5)
H9A0.08390.37930.34390.109*
H9B0.03700.51100.28270.109*
H9C0.10310.45290.32950.109*
C80.0168 (3)0.7115 (2)0.40126 (13)0.0707 (5)
H8A0.06620.76000.45360.106*
H8B0.11010.70560.39250.106*
H8C0.04540.76400.35570.106*
O5A0.2757 (3)0.6081 (2)0.53640 (13)0.0644 (8)0.555 (4)
O5B0.2835 (4)0.3945 (3)0.46915 (17)0.0705 (11)0.445 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0914 (9)0.0416 (6)0.0451 (6)0.0103 (6)0.0044 (6)0.0013 (5)
O40.0965 (10)0.0517 (7)0.0497 (7)0.0094 (6)0.0004 (6)0.0124 (5)
O10.0363 (6)0.0933 (9)0.0612 (7)0.0030 (6)0.0105 (5)0.0050 (6)
O20.0464 (6)0.0670 (7)0.0513 (6)0.0117 (5)0.0021 (5)0.0040 (5)
N10.0416 (6)0.0520 (7)0.0393 (6)0.0001 (5)0.0049 (5)0.0040 (5)
C10.0469 (8)0.0430 (8)0.0452 (8)0.0043 (6)0.0074 (6)0.0013 (6)
C20.0553 (9)0.0465 (8)0.0478 (8)0.0061 (7)0.0096 (7)0.0031 (6)
C30.0373 (7)0.0499 (8)0.0432 (7)0.0010 (6)0.0025 (6)0.0091 (6)
C40.0407 (7)0.0417 (7)0.0413 (7)0.0020 (6)0.0006 (6)0.0092 (6)
C50.0345 (7)0.0380 (7)0.0391 (7)0.0020 (5)0.0007 (5)0.0102 (5)
C60.0291 (6)0.0451 (7)0.0439 (7)0.0036 (5)0.0010 (5)0.0088 (6)
C70.0321 (7)0.0408 (7)0.0409 (7)0.0004 (5)0.0027 (5)0.0108 (6)
N20.0486 (7)0.0539 (8)0.0562 (8)0.0005 (6)0.0033 (6)0.0000 (6)
C100.0557 (10)0.0610 (10)0.0573 (10)0.0013 (8)0.0069 (8)0.0063 (8)
C90.0696 (12)0.0693 (12)0.0691 (12)0.0050 (10)0.0019 (9)0.0119 (9)
C80.0690 (12)0.0566 (10)0.0766 (12)0.0060 (9)0.0016 (9)0.0009 (9)
O5A0.0737 (15)0.0581 (13)0.0527 (13)0.0055 (11)0.0016 (10)0.0063 (10)
O5B0.081 (2)0.069 (2)0.0497 (16)0.0120 (15)0.0070 (13)0.0009 (13)
Geometric parameters (Å, º) top
O3—C11.2621 (18)C6—C7i1.393 (2)
O3—H3A0.8200C6—H60.9300
O4—C11.2519 (18)C7—C6i1.393 (2)
O4—H4B0.8200N2—C101.321 (2)
O1—C31.2182 (18)N2—C91.462 (2)
O2—C41.2128 (17)N2—C81.463 (2)
N1—C31.3971 (19)C10—O5B1.311 (3)
N1—C41.4067 (19)C10—O5A1.328 (3)
N1—C21.464 (2)C10—H10A0.9300
C1—C21.515 (2)C10—H10B0.9300
C2—H2A0.9700C9—H9A0.9600
C2—H2B0.9700C9—H9B0.9600
C3—C71.510 (2)C9—H9C0.9600
C4—C51.502 (2)C8—H8A0.9600
C5—C61.402 (2)C8—H8B0.9600
C5—C71.4037 (19)C8—H8C0.9600
C1—O3—H3A109.5C6i—C7—C5121.85 (13)
C1—O4—H4B109.5C6i—C7—C3129.67 (12)
C3—N1—C4111.97 (12)C5—C7—C3108.48 (12)
C3—N1—C2124.62 (13)C10—N2—C9120.63 (15)
C4—N1—C2123.38 (13)C8—N2—C10120.88 (15)
O4—C1—O3125.38 (14)C9—N2—C8118.48 (14)
O4—C1—C2116.07 (13)O5B—C10—N2118.93 (19)
O3—C1—C2118.53 (13)O5B—C10—O5A119.5 (2)
N1—C2—C1113.67 (12)N2—C10—O5A121.58 (18)
N1—C2—H2A108.8N2—C10—H10A119.2
C1—C2—H2A108.8O5A—C10—H10A119.2
N1—C2—H2B108.8O5B—C10—H10B120.5
C1—C2—H2B108.8N2—C10—H10B120.5
H2A—C2—H2B107.7H10A—C10—H10B120.2
O1—C3—N1124.69 (14)N2—C9—H9A109.5
O1—C3—C7129.57 (14)N2—C9—H9B109.5
N1—C3—C7105.74 (12)H9A—C9—H9B109.5
O2—C4—N1124.30 (14)N2—C9—H9C109.5
O2—C4—C5128.99 (14)H9A—C9—H9C109.5
N1—C4—C5106.70 (11)H9B—C9—H9C109.5
C6—C5—C7123.04 (13)N2—C8—H8A109.5
C6—C5—C4129.85 (12)N2—C8—H8B109.5
C7—C5—C4107.11 (13)H8A—C8—H8B109.5
C7i—C6—C5115.11 (12)N2—C8—H8C109.5
C7i—C6—H6122.4H8A—C8—H8C109.5
C5—C6—H6122.4H8B—C8—H8C109.5
C3—N1—C2—C1117.78 (16)N1—C4—C5—C70.77 (14)
C4—N1—C2—C164.21 (19)C7—C5—C6—C7i0.1 (2)
O4—C1—C2—N1158.82 (14)C4—C5—C6—C7i179.65 (13)
O3—C1—C2—N122.9 (2)C6—C5—C7—C6i0.1 (2)
C4—N1—C3—O1179.90 (15)C4—C5—C7—C6i179.75 (12)
C2—N1—C3—O11.7 (2)C6—C5—C7—C3178.94 (12)
C4—N1—C3—C70.18 (16)C4—C5—C7—C30.67 (14)
C2—N1—C3—C7178.38 (12)O1—C3—C7—C6i0.6 (3)
C3—N1—C4—O2179.89 (14)N1—C3—C7—C6i179.32 (13)
C2—N1—C4—O21.9 (2)O1—C3—C7—C5179.59 (15)
C3—N1—C4—C50.58 (15)N1—C3—C7—C50.33 (15)
C2—N1—C4—C5178.81 (12)C9—N2—C10—O5B2.6 (3)
O2—C4—C5—C60.5 (2)C8—N2—C8—O5B178.4 (2)
N1—C4—C5—C6178.80 (13)C9—N2—C10—O5A176.1 (2)
O2—C4—C5—C7179.96 (15)C8—N2—C8—O5A2.9 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O5A0.821.722.526 (2)166
O4—H4B···O5B0.821.702.496 (2)162
C2—H2A···O3ii0.972.413.230 (2)142
C6—H6···O1iii0.932.503.414 (2)166
C9—H9A···O2iv0.962.573.432 (3)149
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x1, y, z; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H8N2O8·2C3H7NO
Mr478.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.7470 (15), 9.3100 (19), 16.334 (5)
β (°) 104.02 (3)
V3)1143.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
6227, 2236, 1910
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.06
No. of reflections2236
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O5A0.821.722.526 (2)166
O4—H4B···O5B0.821.702.496 (2)162
C2—H2A···O3i0.972.413.230 (2)142
C6—H6···O1ii0.932.503.414 (2)166
C9—H9A···O2iii0.962.573.432 (3)149
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1, y, z; (iii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Project for Innovation Teams of Liaoning Province, China (No. 2007 T052), the Project for Provincial Key Laboratories of Liaoning Province, China (No. 2008S104) and the Doctoral Startup Project, Liaoning University.

References

First citationBarooah, N., Sarma, R. J. & Baruah, J. B. (2006). CrystEngComm, 8, 608–615.  Web of Science CSD CrossRef CAS Google Scholar
First citationBhosale, S. V., Jani, C. H. & Langford, S. J. (2008). Chem. Soc. Rev. 37, 331–342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGabriel, G. J. & Iverson, B. L. (2002). J. Am. Chem. Soc. 124, 15174–15175.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGhosh, S. & Ramakrishnan, S. (2005). Angew. Chem. Int. Ed. 44, 5441–5447.  Web of Science CrossRef CAS Google Scholar
First citationKimizuka, N., Kawasaki, T., Hirata, K. & Kunitake, T. (1995). J. Am. Chem. Soc. 117, 6360–6361.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds