organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-Hy­droxy­imino-N′-[(E)-2-pyridyl­methyl­ene]propanohydrazide

aDepartment of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska Str. 64, 01601 Kyiv, Ukraine, bDepartment of General Chemistry, O.O. Bohomolets National Medical University, Shevchenko blvd. 13, 01601 Kiev, Ukraine, and cFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie str., 50-383 Wrocław, Poland
*Correspondence e-mail: ysmoroz@yahoo.com

(Received 26 August 2009; accepted 27 August 2009; online 9 September 2009)

In the title compound, C9H10N4O2, the pyridine ring is twisted by 16.5 (1)° from the mean plane defined by the remaining non-H atoms. An intra­molecular N—H⋯N inter­action is present. In the crystal, inter­molecular O—H⋯N and N—H⋯O hydrogen bonds link mol­ecules into layers parallel to the bc plane. The crystal packing exhibits ππ inter­actions indicated by the short distance of 3.649 (1) Å between the centroids of the pyridine rings of neighbouring mol­ecules.

Related literature

For the crystal structures of related oxime derivatives, see: Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Moroz et al. (2009[Moroz, Y. S., Konovalova, I. S., Iskenderov, T. S., Pavlova, S. V. & Shishkin, O. V. (2009). Acta Cryst. E65, o2242.]). For 2-hydroxy­imino­propanamide and amide derivatives of 2-hydroxy­imino­propanoic acid, see: Onindo et al. (1995[Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911-3915.]); Duda et al. (1997[Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853-3859.]); Sliva et al. (1997a[Sliva, T. Yu., Duda, A. M., Glowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273-276.]). For the preparation and characterization of 3d-metal complexes with the structural analog of the title compound, see: Moroz et al. (2008a[Moroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008a). Inorg. Chem. 47, 5656-5665.],b[Moroz, Y. S., Sliva, T. Yu., Kulon, K., Kozłowski, H. & Fritsky, I. O. (2008b). Acta Cryst. E64, m353-m354.]). For the synthesis of 2-(hydroxy­imino)propane­hydrazide, see Fritsky et al. (1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Glowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N4O2

  • Mr = 206.21

  • Monoclinic, P 21 /c

  • a = 10.274 (4) Å

  • b = 9.717 (4) Å

  • c = 10.136 (4) Å

  • β = 109.28 (4)°

  • V = 955.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.4 × 0.4 × 0.3 mm

Data collection
  • Kuma KM-4-CCD diffractometer

  • Absorption correction: none

  • 10648 measured reflections

  • 2680 independent reflections

  • 2449 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.08

  • 2680 reflections

  • 176 parameters

  • All H-atom parameters refined

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H21⋯N1i 0.881 (17) 1.897 (18) 2.7667 (17) 168.6 (15)
N3—H31⋯O1ii 0.879 (16) 2.217 (16) 2.9656 (15) 142.9 (14)
N3—H31⋯N4 0.879 (16) 2.240 (16) 2.6059 (15) 104.7 (12)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of our research study we present the structure of the title compound, 1 (Fig. 1), which comprises several donor groups: oxime, hydrazone, azomethine, and pyridine. It has been shown previously that structurally similiar strand ligand forms mono- and tetranuclear grid-like assemblies with 3d-metal ions (Moroz et al., 2008a,b).

The C—N and N—O bond lengths in the oxime group, i.e. 1.285 (1) and 1.387 (1) Å, respectively, adopt typical values (Mokhir et al., 2002; Moroz et al., 2009). The oxime group is in a trans position with respect to the amide group, in accordance with the structures of 2-hydroxyiminopropanamide and other amide derivatives of 2-hydroxyiminopropanoic acid (Onindo et al., 1995; Duda et al., 1997; Sliva et al., 1997a). This conformation is stabilized by an N3—H···N4 intramolecular interaction (Table 1). The CH3C(=NOH)C(O)NH fragment deviates from planarity because of a twist between the oxime and amide groups about the C7—C8 bond; the O1—C7—C8—N4 torsion angle is 173.3 (1)°. The C—N bond length in the azomethine group is 1.283 (1) Å, and the N2—C6—C5 angle has almost ideal value 120.5 (1)°. The pyridine nitrogen atom is situated in an anti- position with respect to the azomethine group.

In the crystal packing, molecules are connected by O2—H···N1 and N3—H···O1 hydrogen bonds (Table 1), where the oximic oxygen and hydrazone nitrogen atoms act as donors and the hydrazone oxygen and pyridine nitrogen atoms act as acceptors. Due to the presence of the system of O2—H···N1 and N3—H···O1 hydrogen bonds, layers parallel to bc plane are formed. The layers are connected in three-dimensional structure by π-π contacts with centroid-to-centroid distance of 3.649 (2) Å, which arise between the pyridine rings of neighbour molecules.

Related literature top

For the crystal structures of related oxime derivatives, see: Mokhir et al. (2002); Moroz et al. (2009). For 2-hydroxyiminopropanamide and amide derivatives of 2-hydroxyiminopropanoic acid, see: Onindo et al. (1995); Duda et al. (1997); Sliva et al. (1997a). For the preparation and characterization of 3d-metal complexes with the structural analog of the title compound, see: Moroz et al. (2008a,b). For the synthesis of 2-(hydroxyimino)propanehydrazide, see Fritsky et al. (1998).

Experimental top

The compound 1 has beeen prepared accourding to following procedure: picolinaldehyde (1.1 ml, 0.012 mol) was added to 20 ml of a stirred warm ethanol/water solution of 2-(hydroxyimino)propanehydrazide (1.17 g, 0.01 mol) prepared according to early reported method (Fritsky et al., 1998). After 20 minutes of stirring at 60°C a yellowish precipitate was formed. It was filtered off, washed with water and acetone and recrystalized from methanol. Yield: 1.65 g, 80%. 1H NMR, 400.13 MHz, (DMSO-d6): 1.983 (s, 3H, CH3), 7.393 (dd, 1H, py-5, J = 5.1 Hz, J = 7.2 Hz, py—H), 7.854 (t, 1H, py-4, J = 7.2 Hz, py—H), 7.932 (d, 1H, py-3, J = 7.2 Hz, py—H), 8.494 (s, 1H, CH), 8.594 (d, 1H, py-6, J = 5.1 Hz, py—H), 11.703 (s, 1H, NH), 11.932 (s, 1H, NOH); IR (KBr, cm-1): 1670 ν(COamid I), 1040, 895 ν(NOoxim), 3345 ν(NHas). Anal. calc. for C9H10N4O2 C, 52.42; H, 4.89; N, 27.17. Found: C, 52.30; H, 4.98; N, 26.98.

Refinement top

All H atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of 1, with displacement ellipsoids shown at the 40% probability level and atom labelling.
(2E)-2-Hydroxyimino-N'-[(E)-2- pyridylmethylene]propanohydrazide top
Crystal data top
C9H10N4O2F(000) = 432
Mr = 206.21Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 11569 reflections
a = 10.274 (4) Åθ = 3–37°
b = 9.717 (4) ŵ = 0.11 mm1
c = 10.136 (4) ÅT = 100 K
β = 109.28 (4)°Block, white
V = 955.2 (7) Å30.4 × 0.4 × 0.3 mm
Z = 4
Data collection top
Kuma KM-4-CCD
diffractometer
2449 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.023
Graphite monochromatorθmax = 30.0°, θmin = 3.2°
Detector resolution: 8.3359 pixels mm-1h = 1413
ω scansk = 1310
10648 measured reflectionsl = 1414
2680 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.2439P]
where P = (Fo2 + 2Fc2)/3
2680 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C9H10N4O2V = 955.2 (7) Å3
Mr = 206.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.274 (4) ŵ = 0.11 mm1
b = 9.717 (4) ÅT = 100 K
c = 10.136 (4) Å0.4 × 0.4 × 0.3 mm
β = 109.28 (4)°
Data collection top
Kuma KM-4-CCD
diffractometer
2449 reflections with I > 2σ(I)
10648 measured reflectionsRint = 0.023
2680 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106All H-atom parameters refined
S = 1.08Δρmax = 0.46 e Å3
2680 reflectionsΔρmin = 0.18 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59592 (7)0.23238 (7)0.23853 (7)0.01751 (17)
O20.24735 (8)0.10483 (8)0.16272 (8)0.01954 (17)
H210.2245 (17)0.1328 (17)0.2501 (18)0.032 (4)*
N10.85431 (9)0.66853 (8)0.05564 (8)0.01561 (18)
N20.70574 (8)0.39826 (8)0.08234 (8)0.01477 (17)
N30.59208 (9)0.31588 (9)0.02612 (9)0.01608 (18)
H310.5529 (16)0.3104 (16)0.0650 (17)0.030 (4)*
N40.36471 (8)0.18113 (8)0.09566 (8)0.01500 (17)
C10.95964 (11)0.75821 (10)0.01987 (11)0.0176 (2)
H10.9570 (16)0.8267 (16)0.0903 (16)0.029 (4)*
C21.06781 (10)0.75321 (10)0.10549 (10)0.0168 (2)
H21.1433 (15)0.8188 (14)0.1263 (15)0.023 (3)*
C31.06686 (10)0.64989 (10)0.20031 (10)0.0167 (2)
H31.1409 (16)0.6414 (16)0.2873 (16)0.026 (4)*
C40.95703 (10)0.55828 (10)0.16717 (10)0.01493 (19)
H40.9544 (15)0.4838 (15)0.2317 (15)0.024 (3)*
C50.85205 (10)0.57099 (9)0.03849 (9)0.01315 (18)
C60.73225 (10)0.47858 (10)0.00602 (10)0.01499 (19)
H60.6756 (15)0.4825 (15)0.1032 (15)0.026 (3)*
C70.54344 (10)0.23721 (9)0.11115 (10)0.01334 (18)
C80.41629 (10)0.15545 (9)0.03573 (10)0.01366 (19)
C90.36358 (11)0.05663 (11)0.11943 (11)0.0188 (2)
H9A0.2794 (19)0.0181 (19)0.0675 (19)0.044 (5)*
H9B0.3462 (17)0.1013 (17)0.1967 (18)0.037 (4)*
H9C0.4325 (17)0.0149 (17)0.1626 (17)0.035 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0173 (3)0.0225 (4)0.0118 (3)0.0006 (3)0.0036 (3)0.0006 (2)
O20.0176 (4)0.0249 (4)0.0133 (3)0.0076 (3)0.0014 (3)0.0023 (3)
N10.0163 (4)0.0174 (4)0.0136 (4)0.0008 (3)0.0055 (3)0.0016 (3)
N20.0133 (4)0.0166 (4)0.0145 (4)0.0022 (3)0.0046 (3)0.0024 (3)
N30.0160 (4)0.0202 (4)0.0109 (4)0.0054 (3)0.0029 (3)0.0011 (3)
N40.0128 (4)0.0168 (4)0.0146 (4)0.0022 (3)0.0036 (3)0.0028 (3)
C10.0192 (5)0.0172 (4)0.0180 (5)0.0002 (3)0.0084 (4)0.0029 (3)
C20.0155 (4)0.0163 (4)0.0198 (5)0.0018 (3)0.0076 (4)0.0022 (3)
C30.0147 (4)0.0188 (4)0.0153 (4)0.0002 (3)0.0034 (3)0.0017 (3)
C40.0161 (4)0.0153 (4)0.0132 (4)0.0001 (3)0.0046 (3)0.0007 (3)
C50.0139 (4)0.0138 (4)0.0128 (4)0.0006 (3)0.0058 (3)0.0011 (3)
C60.0147 (4)0.0171 (4)0.0126 (4)0.0005 (3)0.0038 (3)0.0014 (3)
C70.0133 (4)0.0139 (4)0.0133 (4)0.0011 (3)0.0050 (3)0.0004 (3)
C80.0136 (4)0.0139 (4)0.0139 (4)0.0001 (3)0.0051 (3)0.0010 (3)
C90.0201 (5)0.0190 (4)0.0170 (4)0.0037 (4)0.0058 (4)0.0024 (3)
Geometric parameters (Å, º) top
O1—C71.2249 (13)C2—H20.972 (14)
O2—N41.3872 (12)C3—C41.3886 (14)
O2—H210.881 (17)C3—H30.959 (15)
N1—C11.3427 (13)C4—C51.3967 (15)
N1—C51.3505 (12)C4—H40.982 (14)
N2—C61.2832 (13)C5—C61.4691 (14)
N2—N31.3746 (12)C6—H60.965 (14)
N3—C71.3643 (12)C7—C81.5042 (14)
N3—H310.879 (16)C8—C91.4962 (13)
N4—C81.2848 (14)C9—H9A0.930 (19)
C1—C21.3854 (16)C9—H9B0.962 (17)
C1—H10.970 (15)C9—H9C0.985 (17)
C2—C31.3921 (14)
N4—O2—H21103.1 (11)N1—C5—C4122.25 (9)
C1—N1—C5117.71 (9)N1—C5—C6114.84 (9)
C6—N2—N3114.32 (9)C4—C5—C6122.90 (9)
C7—N3—N2120.18 (8)N2—C6—C5120.45 (9)
C7—N3—H31119.6 (10)N2—C6—H6122.7 (9)
N2—N3—H31120.2 (10)C5—C6—H6116.8 (9)
C8—N4—O2113.47 (8)O1—C7—N3124.18 (9)
N1—C1—C2123.77 (9)O1—C7—C8121.44 (9)
N1—C1—H1115.0 (9)N3—C7—C8114.38 (8)
C2—C1—H1121.2 (9)N4—C8—C9127.58 (9)
C1—C2—C3118.17 (9)N4—C8—C7114.58 (9)
C1—C2—H2121.1 (9)C9—C8—C7117.84 (9)
C3—C2—H2120.7 (9)C8—C9—H9A112.3 (11)
C4—C3—C2119.06 (10)C8—C9—H9B111.8 (10)
C4—C3—H3120.1 (9)H9A—C9—H9B104.7 (15)
C2—C3—H3120.8 (9)C8—C9—H9C111.3 (9)
C3—C4—C5118.98 (9)H9A—C9—H9C111.4 (15)
C3—C4—H4120.7 (8)H9B—C9—H9C104.8 (13)
C5—C4—H4120.3 (8)
C6—N2—N3—C7172.56 (9)N1—C5—C6—N2167.65 (9)
C5—N1—C1—C22.31 (14)C4—C5—C6—N213.31 (14)
N1—C1—C2—C30.46 (15)N2—N3—C7—O11.03 (15)
C1—C2—C3—C41.31 (14)N2—N3—C7—C8178.35 (8)
C2—C3—C4—C51.19 (14)O2—N4—C8—C90.54 (14)
C1—N1—C5—C42.42 (14)O2—N4—C8—C7179.80 (7)
C1—N1—C5—C6178.54 (8)O1—C7—C8—N4173.25 (9)
C3—C4—C5—N10.71 (14)N3—C7—C8—N46.14 (12)
C3—C4—C5—C6179.68 (8)O1—C7—C8—C96.08 (13)
N3—N2—C6—C5178.98 (8)N3—C7—C8—C9174.52 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H21···N1i0.881 (17)1.897 (18)2.7667 (17)168.6 (15)
N3—H31···O1ii0.879 (16)2.217 (16)2.9656 (15)142.9 (14)
N3—H31···N40.879 (16)2.240 (16)2.6059 (15)104.7 (12)
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H10N4O2
Mr206.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.274 (4), 9.717 (4), 10.136 (4)
β (°) 109.28 (4)
V3)955.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.4 × 0.4 × 0.3
Data collection
DiffractometerKuma KM-4-CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10648, 2680, 2449
Rint0.023
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.08
No. of reflections2680
No. of parameters176
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.46, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H21···N1i0.881 (17)1.897 (18)2.7667 (17)168.6 (15)
N3—H31···O1ii0.879 (16)2.217 (16)2.9656 (15)142.9 (14)
N3—H31···N40.879 (16)2.240 (16)2.6059 (15)104.7 (12)
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241–2009).

References

First citationDuda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Glowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Y. S., Konovalova, I. S., Iskenderov, T. S., Pavlova, S. V. & Shishkin, O. V. (2009). Acta Cryst. E65, o2242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008a). Inorg. Chem. 47, 5656–5665.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoroz, Y. S., Sliva, T. Yu., Kulon, K., Kozłowski, H. & Fritsky, I. O. (2008b). Acta Cryst. E64, m353–m354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOnindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915.  CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Duda, A. M., Glowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds