organic compounds
(2E)-2-Hydroxyimino-N′-[(E)-2-pyridylmethylene]propanohydrazide
aDepartment of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska Str. 64, 01601 Kyiv, Ukraine, bDepartment of General Chemistry, O.O. Bohomolets National Medical University, Shevchenko blvd. 13, 01601 Kiev, Ukraine, and cFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie str., 50-383 Wrocław, Poland
*Correspondence e-mail: ysmoroz@yahoo.com
In the title compound, C9H10N4O2, the pyridine ring is twisted by 16.5 (1)° from the mean plane defined by the remaining non-H atoms. An intramolecular N—H⋯N interaction is present. In the crystal, intermolecular O—H⋯N and N—H⋯O hydrogen bonds link molecules into layers parallel to the bc plane. The crystal packing exhibits π–π interactions indicated by the short distance of 3.649 (1) Å between the centroids of the pyridine rings of neighbouring molecules.
Related literature
For the crystal structures of related oxime derivatives, see: Mokhir et al. (2002); Moroz et al. (2009). For 2-hydroxyiminopropanamide and amide derivatives of 2-hydroxyiminopropanoic acid, see: Onindo et al. (1995); Duda et al. (1997); Sliva et al. (1997a). For the preparation and characterization of 3d-metal complexes with the structural analog of the title compound, see: Moroz et al. (2008a,b). For the synthesis of 2-(hydroxyimino)propanehydrazide, see Fritsky et al. (1998).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809034400/cv2608sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809034400/cv2608Isup2.hkl
The compound 1 has beeen prepared accourding to following procedure: picolinaldehyde (1.1 ml, 0.012 mol) was added to 20 ml of a stirred warm ethanol/water solution of 2-(hydroxyimino)propanehydrazide (1.17 g, 0.01 mol) prepared according to early reported method (Fritsky et al., 1998). After 20 minutes of stirring at 60°C a yellowish precipitate was formed. It was filtered off, washed with water and acetone and recrystalized from methanol. Yield: 1.65 g, 80%. 1H NMR, 400.13 MHz, (DMSO-d6): 1.983 (s, 3H, CH3), 7.393 (dd, 1H, py-5, J = 5.1 Hz, J = 7.2 Hz, py—H), 7.854 (t, 1H, py-4, J = 7.2 Hz, py—H), 7.932 (d, 1H, py-3, J = 7.2 Hz, py—H), 8.494 (s, 1H, CH), 8.594 (d, 1H, py-6, J = 5.1 Hz, py—H), 11.703 (s, 1H, NH), 11.932 (s, 1H, NOH); IR (KBr, cm-1): 1670 ν(COamid I), 1040, 895 ν(NOoxim), 3345 ν(NHas). Anal. calc. for C9H10N4O2 C, 52.42; H, 4.89; N, 27.17. Found: C, 52.30; H, 4.98; N, 26.98.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. A view of 1, with displacement ellipsoids shown at the 40% probability level and atom labelling. |
C9H10N4O2 | F(000) = 432 |
Mr = 206.21 | Dx = 1.434 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2ybc | Cell parameters from 11569 reflections |
a = 10.274 (4) Å | θ = 3–37° |
b = 9.717 (4) Å | µ = 0.11 mm−1 |
c = 10.136 (4) Å | T = 100 K |
β = 109.28 (4)° | Block, white |
V = 955.2 (7) Å3 | 0.4 × 0.4 × 0.3 mm |
Z = 4 |
Kuma KM-4-CCD diffractometer | 2449 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.023 |
Graphite monochromator | θmax = 30.0°, θmin = 3.2° |
Detector resolution: 8.3359 pixels mm-1 | h = −14→13 |
ω scans | k = −13→10 |
10648 measured reflections | l = −14→14 |
2680 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | All H-atom parameters refined |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0621P)2 + 0.2439P] where P = (Fo2 + 2Fc2)/3 |
2680 reflections | (Δ/σ)max < 0.001 |
176 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C9H10N4O2 | V = 955.2 (7) Å3 |
Mr = 206.21 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.274 (4) Å | µ = 0.11 mm−1 |
b = 9.717 (4) Å | T = 100 K |
c = 10.136 (4) Å | 0.4 × 0.4 × 0.3 mm |
β = 109.28 (4)° |
Kuma KM-4-CCD diffractometer | 2449 reflections with I > 2σ(I) |
10648 measured reflections | Rint = 0.023 |
2680 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.106 | All H-atom parameters refined |
S = 1.08 | Δρmax = 0.46 e Å−3 |
2680 reflections | Δρmin = −0.18 e Å−3 |
176 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.59592 (7) | 0.23238 (7) | 0.23853 (7) | 0.01751 (17) | |
O2 | 0.24735 (8) | 0.10483 (8) | −0.16272 (8) | 0.01954 (17) | |
H21 | 0.2245 (17) | 0.1328 (17) | −0.2501 (18) | 0.032 (4)* | |
N1 | 0.85431 (9) | 0.66853 (8) | −0.05564 (8) | 0.01561 (18) | |
N2 | 0.70574 (8) | 0.39826 (8) | 0.08234 (8) | 0.01477 (17) | |
N3 | 0.59208 (9) | 0.31588 (9) | 0.02612 (9) | 0.01608 (18) | |
H31 | 0.5529 (16) | 0.3104 (16) | −0.0650 (17) | 0.030 (4)* | |
N4 | 0.36471 (8) | 0.18113 (8) | −0.09566 (8) | 0.01500 (17) | |
C1 | 0.95964 (11) | 0.75821 (10) | −0.01987 (11) | 0.0176 (2) | |
H1 | 0.9570 (16) | 0.8267 (16) | −0.0903 (16) | 0.029 (4)* | |
C2 | 1.06781 (10) | 0.75321 (10) | 0.10549 (10) | 0.0168 (2) | |
H2 | 1.1433 (15) | 0.8188 (14) | 0.1263 (15) | 0.023 (3)* | |
C3 | 1.06686 (10) | 0.64989 (10) | 0.20031 (10) | 0.0167 (2) | |
H3 | 1.1409 (16) | 0.6414 (16) | 0.2873 (16) | 0.026 (4)* | |
C4 | 0.95703 (10) | 0.55828 (10) | 0.16717 (10) | 0.01493 (19) | |
H4 | 0.9544 (15) | 0.4838 (15) | 0.2317 (15) | 0.024 (3)* | |
C5 | 0.85205 (10) | 0.57099 (9) | 0.03849 (9) | 0.01315 (18) | |
C6 | 0.73225 (10) | 0.47858 (10) | −0.00602 (10) | 0.01499 (19) | |
H6 | 0.6756 (15) | 0.4825 (15) | −0.1032 (15) | 0.026 (3)* | |
C7 | 0.54344 (10) | 0.23721 (9) | 0.11115 (10) | 0.01334 (18) | |
C8 | 0.41629 (10) | 0.15545 (9) | 0.03573 (10) | 0.01366 (19) | |
C9 | 0.36358 (11) | 0.05663 (11) | 0.11943 (11) | 0.0188 (2) | |
H9A | 0.2794 (19) | 0.0181 (19) | 0.0675 (19) | 0.044 (5)* | |
H9B | 0.3462 (17) | 0.1013 (17) | 0.1967 (18) | 0.037 (4)* | |
H9C | 0.4325 (17) | −0.0149 (17) | 0.1626 (17) | 0.035 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0173 (3) | 0.0225 (4) | 0.0118 (3) | −0.0006 (3) | 0.0036 (3) | 0.0006 (2) |
O2 | 0.0176 (4) | 0.0249 (4) | 0.0133 (3) | −0.0076 (3) | 0.0014 (3) | −0.0023 (3) |
N1 | 0.0163 (4) | 0.0174 (4) | 0.0136 (4) | 0.0008 (3) | 0.0055 (3) | 0.0016 (3) |
N2 | 0.0133 (4) | 0.0166 (4) | 0.0145 (4) | −0.0022 (3) | 0.0046 (3) | −0.0024 (3) |
N3 | 0.0160 (4) | 0.0202 (4) | 0.0109 (4) | −0.0054 (3) | 0.0029 (3) | −0.0011 (3) |
N4 | 0.0128 (4) | 0.0168 (4) | 0.0146 (4) | −0.0022 (3) | 0.0036 (3) | −0.0028 (3) |
C1 | 0.0192 (5) | 0.0172 (4) | 0.0180 (5) | −0.0002 (3) | 0.0084 (4) | 0.0029 (3) |
C2 | 0.0155 (4) | 0.0163 (4) | 0.0198 (5) | −0.0018 (3) | 0.0076 (4) | −0.0022 (3) |
C3 | 0.0147 (4) | 0.0188 (4) | 0.0153 (4) | 0.0002 (3) | 0.0034 (3) | −0.0017 (3) |
C4 | 0.0161 (4) | 0.0153 (4) | 0.0132 (4) | 0.0001 (3) | 0.0046 (3) | 0.0007 (3) |
C5 | 0.0139 (4) | 0.0138 (4) | 0.0128 (4) | 0.0006 (3) | 0.0058 (3) | −0.0011 (3) |
C6 | 0.0147 (4) | 0.0171 (4) | 0.0126 (4) | −0.0005 (3) | 0.0038 (3) | −0.0014 (3) |
C7 | 0.0133 (4) | 0.0139 (4) | 0.0133 (4) | 0.0011 (3) | 0.0050 (3) | −0.0004 (3) |
C8 | 0.0136 (4) | 0.0139 (4) | 0.0139 (4) | 0.0001 (3) | 0.0051 (3) | −0.0010 (3) |
C9 | 0.0201 (5) | 0.0190 (4) | 0.0170 (4) | −0.0037 (4) | 0.0058 (4) | 0.0024 (3) |
O1—C7 | 1.2249 (13) | C2—H2 | 0.972 (14) |
O2—N4 | 1.3872 (12) | C3—C4 | 1.3886 (14) |
O2—H21 | 0.881 (17) | C3—H3 | 0.959 (15) |
N1—C1 | 1.3427 (13) | C4—C5 | 1.3967 (15) |
N1—C5 | 1.3505 (12) | C4—H4 | 0.982 (14) |
N2—C6 | 1.2832 (13) | C5—C6 | 1.4691 (14) |
N2—N3 | 1.3746 (12) | C6—H6 | 0.965 (14) |
N3—C7 | 1.3643 (12) | C7—C8 | 1.5042 (14) |
N3—H31 | 0.879 (16) | C8—C9 | 1.4962 (13) |
N4—C8 | 1.2848 (14) | C9—H9A | 0.930 (19) |
C1—C2 | 1.3854 (16) | C9—H9B | 0.962 (17) |
C1—H1 | 0.970 (15) | C9—H9C | 0.985 (17) |
C2—C3 | 1.3921 (14) | ||
N4—O2—H21 | 103.1 (11) | N1—C5—C4 | 122.25 (9) |
C1—N1—C5 | 117.71 (9) | N1—C5—C6 | 114.84 (9) |
C6—N2—N3 | 114.32 (9) | C4—C5—C6 | 122.90 (9) |
C7—N3—N2 | 120.18 (8) | N2—C6—C5 | 120.45 (9) |
C7—N3—H31 | 119.6 (10) | N2—C6—H6 | 122.7 (9) |
N2—N3—H31 | 120.2 (10) | C5—C6—H6 | 116.8 (9) |
C8—N4—O2 | 113.47 (8) | O1—C7—N3 | 124.18 (9) |
N1—C1—C2 | 123.77 (9) | O1—C7—C8 | 121.44 (9) |
N1—C1—H1 | 115.0 (9) | N3—C7—C8 | 114.38 (8) |
C2—C1—H1 | 121.2 (9) | N4—C8—C9 | 127.58 (9) |
C1—C2—C3 | 118.17 (9) | N4—C8—C7 | 114.58 (9) |
C1—C2—H2 | 121.1 (9) | C9—C8—C7 | 117.84 (9) |
C3—C2—H2 | 120.7 (9) | C8—C9—H9A | 112.3 (11) |
C4—C3—C2 | 119.06 (10) | C8—C9—H9B | 111.8 (10) |
C4—C3—H3 | 120.1 (9) | H9A—C9—H9B | 104.7 (15) |
C2—C3—H3 | 120.8 (9) | C8—C9—H9C | 111.3 (9) |
C3—C4—C5 | 118.98 (9) | H9A—C9—H9C | 111.4 (15) |
C3—C4—H4 | 120.7 (8) | H9B—C9—H9C | 104.8 (13) |
C5—C4—H4 | 120.3 (8) | ||
C6—N2—N3—C7 | −172.56 (9) | N1—C5—C6—N2 | −167.65 (9) |
C5—N1—C1—C2 | 2.31 (14) | C4—C5—C6—N2 | 13.31 (14) |
N1—C1—C2—C3 | −0.46 (15) | N2—N3—C7—O1 | −1.03 (15) |
C1—C2—C3—C4 | −1.31 (14) | N2—N3—C7—C8 | 178.35 (8) |
C2—C3—C4—C5 | 1.19 (14) | O2—N4—C8—C9 | −0.54 (14) |
C1—N1—C5—C4 | −2.42 (14) | O2—N4—C8—C7 | −179.80 (7) |
C1—N1—C5—C6 | 178.54 (8) | O1—C7—C8—N4 | 173.25 (9) |
C3—C4—C5—N1 | 0.71 (14) | N3—C7—C8—N4 | −6.14 (12) |
C3—C4—C5—C6 | 179.68 (8) | O1—C7—C8—C9 | −6.08 (13) |
N3—N2—C6—C5 | −178.98 (8) | N3—C7—C8—C9 | 174.52 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H21···N1i | 0.881 (17) | 1.897 (18) | 2.7667 (17) | 168.6 (15) |
N3—H31···O1ii | 0.879 (16) | 2.217 (16) | 2.9656 (15) | 142.9 (14) |
N3—H31···N4 | 0.879 (16) | 2.240 (16) | 2.6059 (15) | 104.7 (12) |
Symmetry codes: (i) −x+1, y−1/2, −z−1/2; (ii) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H10N4O2 |
Mr | 206.21 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 10.274 (4), 9.717 (4), 10.136 (4) |
β (°) | 109.28 (4) |
V (Å3) | 955.2 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.4 × 0.4 × 0.3 |
Data collection | |
Diffractometer | Kuma KM-4-CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10648, 2680, 2449 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.106, 1.08 |
No. of reflections | 2680 |
No. of parameters | 176 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.46, −0.18 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H21···N1i | 0.881 (17) | 1.897 (18) | 2.7667 (17) | 168.6 (15) |
N3—H31···O1ii | 0.879 (16) | 2.217 (16) | 2.9656 (15) | 142.9 (14) |
N3—H31···N4 | 0.879 (16) | 2.240 (16) | 2.6059 (15) | 104.7 (12) |
Symmetry codes: (i) −x+1, y−1/2, −z−1/2; (ii) x, −y+1/2, z−1/2. |
Acknowledgements
The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241–2009).
References
Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859. CSD CrossRef Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Glowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274. Web of Science CSD CrossRef Google Scholar
Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121. Web of Science CSD CrossRef CAS Google Scholar
Moroz, Y. S., Konovalova, I. S., Iskenderov, T. S., Pavlova, S. V. & Shishkin, O. V. (2009). Acta Cryst. E65, o2242. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008a). Inorg. Chem. 47, 5656–5665. Web of Science CSD CrossRef PubMed CAS Google Scholar
Moroz, Y. S., Sliva, T. Yu., Kulon, K., Kozłowski, H. & Fritsky, I. O. (2008b). Acta Cryst. E64, m353–m354. Web of Science CSD CrossRef IUCr Journals Google Scholar
Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915. CrossRef Web of Science Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sliva, T. Yu., Duda, A. M., Glowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276. CSD CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a part of our research study we present the structure of the title compound, 1 (Fig. 1), which comprises several donor groups: oxime, hydrazone, azomethine, and pyridine. It has been shown previously that structurally similiar strand ligand forms mono- and tetranuclear grid-like assemblies with 3d-metal ions (Moroz et al., 2008a,b).
The C—N and N—O bond lengths in the oxime group, i.e. 1.285 (1) and 1.387 (1) Å, respectively, adopt typical values (Mokhir et al., 2002; Moroz et al., 2009). The oxime group is in a trans position with respect to the amide group, in accordance with the structures of 2-hydroxyiminopropanamide and other amide derivatives of 2-hydroxyiminopropanoic acid (Onindo et al., 1995; Duda et al., 1997; Sliva et al., 1997a). This conformation is stabilized by an N3—H···N4 intramolecular interaction (Table 1). The CH3C(=NOH)C(O)NH fragment deviates from planarity because of a twist between the oxime and amide groups about the C7—C8 bond; the O1—C7—C8—N4 torsion angle is 173.3 (1)°. The C—N bond length in the azomethine group is 1.283 (1) Å, and the N2—C6—C5 angle has almost ideal value 120.5 (1)°. The pyridine nitrogen atom is situated in an anti- position with respect to the azomethine group.
In the crystal packing, molecules are connected by O2—H···N1 and N3—H···O1 hydrogen bonds (Table 1), where the oximic oxygen and hydrazone nitrogen atoms act as donors and the hydrazone oxygen and pyridine nitrogen atoms act as acceptors. Due to the presence of the system of O2—H···N1 and N3—H···O1 hydrogen bonds, layers parallel to bc plane are formed. The layers are connected in three-dimensional structure by π-π contacts with centroid-to-centroid distance of 3.649 (2) Å, which arise between the pyridine rings of neighbour molecules.