organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(pyridin-3-ylmeth­­oxy)benzene

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 4 September 2009; accepted 8 September 2009; online 12 September 2009)

The asymmetric unit of the centrosymmetric title compound, C18H16N2O2, contains one half-mol­ecule. The central benzene ring forms a dihedral angle of 66.8 (1)° with two outer aromatic rings. In the crystal structure, weak inter­molecular C—H⋯N hydrogen bonds link mol­ecules into sheets parallel to (104).

Related literature

For general background to bridging mol­ecules with pyridyl substituents at the terminal positions, see: McMorran & Steel (1998[McMorran, D. A. & Steel, P. J. (1998). Angew. Chem. Int. Ed. 37, 3295-3297.]); Zaman et al. (2005[Zaman, Md. B., Udachin, K., Ripmeester, J. A., Smith, M. D. & zur Loye, H.-C. (2005). Inorg. Chem. 44, 5047-5059.]). For details of the synthesis, see: Gao et al. (2004[Gao, C.-M., Cao, D. & Zhu, L. (2004). Photogr. Sci. Photochem. 22, 103-107.]). For a related structure, see: Gao et al. (2006[Gao, J.-S., Liu, Y., Hou, G.-F., Yu, Y.-H. & Yan, P.-F. (2006). Acta Cryst. E62, o5645-o5646.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O2

  • Mr = 292.33

  • Monoclinic, P 21 /c

  • a = 6.852 (5) Å

  • b = 5.688 (3) Å

  • c = 18.861 (12) Å

  • β = 90.60 (3)°

  • V = 735.0 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.22 × 0.20 × 0.19 mm

Data collection
  • Rigaku RAXIS-RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.981, Tmax = 0.984

  • 6855 measured reflections

  • 1684 independent reflections

  • 1213 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.118

  • S = 1.09

  • 1684 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N1i 0.93 2.57 3.437 (3) 155
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The bridging molecules with pyridyl substituents at the terminal positions are hoped to construct interesting supramolecular architectures by intermolecular hydrogen bonding and coordination with metals. McMorran' group have reported the synthesis of a quadruply stranded helicate that encapsulates a hexafluorophosphate anion by the reaction of 1,4-bis(3-pyridylmethoxy)benzene with palladium chlorate (McMorran et al., 1998). Zaman's group have designed a long rigid organic ligand, 1,4-bis[(3-pyridyl)ethynyl]benzene, which reacted with metal salts to form interpenetrating two-dimensional and three-dimensional cross-zigzag chains and metallocyclic chain structures (Zaman et al., 2005). As an extension of our work about bipyridyl aromatic ligands, we report the crystal structure of the title compound here.

In the title compound (Fig. 1), all bond lengths and angles are normal and correpond to those observed in the related compound (Gao et al., 2006). The 1,4-bis(3-pyridylmethoxy)benzene molecule is centrosymmetric. The planes of two terminal pyridyl groups rotate drastically and make dihedral angles of 66.8 (1) ° with the plane of the central benzene ring.

In the crystal structure, the adjacent 1,4-bis(3-pyridylmethoxy)benzene molecules are linked into two-dimensional supramolecular sheets by intermolecular C—H···N hydrogen bonds (Table 1, Figure 2).

Related literature top

For general background tobridging molecules with pyridyl substituents at the terminal positions, see: McMorran & Steel (1998); Zaman et al. (2005). For details of the synthesis, see: Gao et al. (2004). For a related structure, see: Gao et al. (2006).

Experimental top

The 1,4-bis(3-pyridylmethoxy)benzene was synthesized by the reaction of p-benzenediol and 3-chloromethylpyridine hydrochloride under nitrogen atmosphere and alkaline condition (Gao et al., 2004; Gao et al., 2006). Colourless block-shaped crystals of title compound were obtained by slow evaporation of an methanol solution after three days.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene), and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids at the 30% probability level [symmetry code: (i) -x, 1 - y, -z].
[Figure 2] Fig. 2. A portion of the crystal packing showing the two-dimensional hydrogen bonded (dashed lines) sheet.
1,4-Bis(pyridin-3-ylmethoxy)benzene top
Crystal data top
C18H16N2O2F(000) = 308
Mr = 292.33Dx = 1.321 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4889 reflections
a = 6.852 (5) Åθ = 3.7–27.5°
b = 5.688 (3) ŵ = 0.09 mm1
c = 18.861 (12) ÅT = 291 K
β = 90.60 (3)°Block, colourless
V = 735.0 (8) Å30.22 × 0.20 × 0.19 mm
Z = 2
Data collection top
Rigaku RAXIS-RAPID
diffractometer
1684 independent reflections
Radiation source: fine-focus sealed tube1213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scanθmax = 27.5°, θmin = 3.7°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.981, Tmax = 0.984k = 67
6855 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.0635P]
where P = (Fo2 + 2Fc2)/3
1684 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C18H16N2O2V = 735.0 (8) Å3
Mr = 292.33Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.852 (5) ŵ = 0.09 mm1
b = 5.688 (3) ÅT = 291 K
c = 18.861 (12) Å0.22 × 0.20 × 0.19 mm
β = 90.60 (3)°
Data collection top
Rigaku RAXIS-RAPID
diffractometer
1684 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1213 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.984Rint = 0.030
6855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.09Δρmax = 0.24 e Å3
1684 reflectionsΔρmin = 0.14 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8460 (2)0.0288 (3)0.20865 (8)0.0485 (4)
H10.96500.06110.23070.058*
C20.7721 (2)0.1906 (3)0.16191 (8)0.0530 (4)
H20.84040.32810.15240.064*
C30.5951 (2)0.1469 (3)0.12921 (8)0.0484 (4)
H30.54220.25450.09720.058*
C40.49744 (18)0.0588 (2)0.14460 (7)0.0367 (3)
C50.5857 (2)0.2119 (3)0.19208 (7)0.0428 (4)
H50.52130.35170.20220.051*
C60.30072 (19)0.1158 (3)0.11378 (7)0.0433 (4)
H6A0.24370.02330.09220.052*
H6B0.21440.17040.15070.052*
C70.15874 (17)0.3913 (2)0.03246 (7)0.0368 (3)
C80.02824 (18)0.3034 (3)0.04198 (7)0.0408 (3)
H80.04770.17100.07000.049*
C90.18583 (18)0.4142 (3)0.00955 (7)0.0408 (3)
H90.31120.35630.01630.049*
N10.75686 (17)0.1729 (2)0.22431 (7)0.0510 (4)
O10.32526 (13)0.29466 (19)0.06180 (5)0.0509 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0308 (7)0.0572 (9)0.0571 (9)0.0002 (6)0.0101 (6)0.0171 (7)
C20.0439 (9)0.0449 (8)0.0700 (10)0.0117 (7)0.0063 (7)0.0064 (8)
C30.0487 (8)0.0432 (8)0.0532 (8)0.0035 (7)0.0108 (6)0.0038 (7)
C40.0308 (6)0.0395 (7)0.0396 (7)0.0005 (5)0.0056 (5)0.0083 (6)
C50.0371 (7)0.0388 (7)0.0525 (8)0.0016 (6)0.0069 (6)0.0008 (6)
C60.0334 (7)0.0482 (8)0.0482 (8)0.0010 (6)0.0093 (6)0.0109 (6)
C70.0264 (6)0.0465 (8)0.0374 (6)0.0056 (5)0.0046 (5)0.0038 (6)
C80.0308 (7)0.0475 (8)0.0438 (7)0.0007 (6)0.0045 (5)0.0111 (6)
C90.0250 (6)0.0530 (8)0.0444 (7)0.0016 (6)0.0030 (5)0.0073 (6)
N10.0394 (7)0.0538 (8)0.0596 (8)0.0056 (6)0.0145 (6)0.0004 (6)
O10.0269 (5)0.0683 (7)0.0573 (6)0.0058 (4)0.0048 (4)0.0267 (5)
Geometric parameters (Å, º) top
C1—N11.334 (2)C6—O11.4239 (17)
C1—C21.368 (2)C6—H6A0.9700
C1—H10.9300C6—H6B0.9700
C2—C31.378 (2)C7—C9i1.374 (2)
C2—H20.9300C7—O11.3773 (17)
C3—C41.380 (2)C7—C81.389 (2)
C3—H30.9300C8—C91.3869 (19)
C4—C51.3839 (19)C8—H80.9300
C4—C61.4979 (19)C9—C7i1.374 (2)
C5—N11.3336 (19)C9—H90.9300
C5—H50.9300
N1—C1—C2123.64 (13)O1—C6—H6A110.1
N1—C1—H1118.2C4—C6—H6A110.1
C2—C1—H1118.2O1—C6—H6B110.1
C1—C2—C3119.03 (14)C4—C6—H6B110.1
C1—C2—H2120.5H6A—C6—H6B108.4
C3—C2—H2120.5C9i—C7—O1115.88 (11)
C2—C3—C4119.04 (14)C9i—C7—C8119.64 (12)
C2—C3—H3120.5O1—C7—C8124.47 (13)
C4—C3—H3120.5C9—C8—C7119.64 (14)
C3—C4—C5117.37 (13)C9—C8—H8120.2
C3—C4—C6122.56 (13)C7—C8—H8120.2
C5—C4—C6120.04 (13)C7i—C9—C8120.71 (12)
N1—C5—C4124.50 (14)C7i—C9—H9119.6
N1—C5—H5117.7C8—C9—H9119.6
C4—C5—H5117.7C5—N1—C1116.41 (13)
O1—C6—C4108.04 (11)C7—O1—C6117.28 (10)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N1ii0.932.573.437 (3)155
Symmetry code: (ii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H16N2O2
Mr292.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)6.852 (5), 5.688 (3), 18.861 (12)
β (°) 90.60 (3)
V3)735.0 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.20 × 0.19
Data collection
DiffractometerRigaku RAXIS-RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.981, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
6855, 1684, 1213
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.09
No. of reflections1684
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.14

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N1i0.932.573.437 (3)155.2
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Specialized Research Funds for Technological Innovative Talent in Harbin (RC2009XK018007) and Heilongjiang University for supporting this study.

References

First citationGao, C.-M., Cao, D. & Zhu, L. (2004). Photogr. Sci. Photochem. 22, 103–107.  CAS Google Scholar
First citationGao, J.-S., Liu, Y., Hou, G.-F., Yu, Y.-H. & Yan, P.-F. (2006). Acta Cryst. E62, o5645–o5646.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMcMorran, D. A. & Steel, P. J. (1998). Angew. Chem. Int. Ed. 37, 3295–3297.  CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaman, Md. B., Udachin, K., Ripmeester, J. A., Smith, M. D. & zur Loye, H.-C. (2005). Inorg. Chem. 44, 5047–5059.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds