metal-organic compounds
Diaquadichlorido[5-(3-pyridinio)tetrazolato-κN2]copper(II) dihydrate
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn
The title compound, [CuCl2(C6H5N5)2(H2O)2]·2H2O, was synthesized by hydrothermal reaction of CuCl2 with 3-(2H-tetrazol-5-yl)pyridine. The CuII cation, located on an inversion center, is coordinated by two Cl− ions, two N atoms from two 5-(3-pyridinio)tetrazolate and two O atoms from two water molecules in a distorted octahedral geometry. In the crystal, molecules are linked into a two-dimensional sheet parallel to (001) by N—H⋯N, O—H⋯N, O—H⋯O and O—H⋯Cl hydrogen bonds involving the pyridinium N atom, the Cl atoms and the coordinated and free water molecules. The latter are disordered over two positions in a 0.54:0.46 ratio.
Related literature
For general background to metal-organic coordination compounds, see: Chen et al. (2000, 2001); Fu & Xiong (2008); Fu et al. (2007); Liu et al. (1999); Xie et al. (2002, 2003); Zhang et al. (2001); Zhao et al. (2004). For related structures, see: Wang et al. (2005); Fu et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809033042/dn2471sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809033042/dn2471Isup2.hkl
A mixture of 3-(2H-tetrazol-5-yl)pyridine (0.2 mmol), CuCl2 (0.4 mmol), distilled water (1 ml) and a few drops of HCl (6 mol/L) was sealed in a glass tube and maintained at 323 K. Blue block-shaped crystals suitable for X-ray analysis were obtained after 3 d.
All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent
using restraints (O-H= 0.85 (1)Å and H···H= 1.39 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of these H atoms were treated as riding on their parent O atom.The free water molecule was found to be roughly staistically disoredered over two positions. H atoms for this disordered molecules were treated as above.
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. Free water molecules have been omitted for clarity. [Symmetry codes: (i) -x+1, -y+1, -z+1]. | |
Fig. 2. The crystal packing of the title compound, viewed along the c axis, showing the two dimensionnal hydrogen-bonded network. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity. |
[CuCl2(C6H5N5)2(H2O)2]·2H2O | Z = 1 |
Mr = 500.80 | F(000) = 255 |
Triclinic, P1 | Dx = 1.813 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.5484 (13) Å | Cell parameters from 1953 reflections |
b = 8.3348 (17) Å | θ = 3.1–27.5° |
c = 9.1215 (18) Å | µ = 1.53 mm−1 |
α = 99.54 (3)° | T = 298 K |
β = 110.22 (3)° | Block, blue |
γ = 91.73 (3)° | 0.15 × 0.10 × 0.10 mm |
V = 458.64 (19) Å3 |
Rigaku Mercury2 diffractometer | 2103 independent reflections |
Radiation source: fine-focus sealed tube | 1953 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
CCD profile fitting scans | h = −8→8 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −10→10 |
Tmin = 0.85, Tmax = 1.00 | l = −11→11 |
4880 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.31 | w = 1/[σ2(Fo2) + 1.0933P] where P = (Fo2 + 2Fc2)/3 |
2103 reflections | (Δ/σ)max < 0.001 |
142 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
[CuCl2(C6H5N5)2(H2O)2]·2H2O | γ = 91.73 (3)° |
Mr = 500.80 | V = 458.64 (19) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.5484 (13) Å | Mo Kα radiation |
b = 8.3348 (17) Å | µ = 1.53 mm−1 |
c = 9.1215 (18) Å | T = 298 K |
α = 99.54 (3)° | 0.15 × 0.10 × 0.10 mm |
β = 110.22 (3)° |
Rigaku Mercury2 diffractometer | 2103 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1953 reflections with I > 2σ(I) |
Tmin = 0.85, Tmax = 1.00 | Rint = 0.037 |
4880 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.31 | Δρmax = 0.33 e Å−3 |
2103 reflections | Δρmin = −0.43 e Å−3 |
142 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.02259 (18) | |
N1 | 0.2750 (6) | −0.3207 (4) | 0.0634 (4) | 0.0311 (7) | |
H1 | 0.3009 | −0.3948 | 0.1211 | 0.037* | |
N2 | 0.3845 (5) | 0.1765 (3) | 0.2805 (4) | 0.0228 (6) | |
N3 | 0.3946 (5) | 0.3381 (3) | 0.2979 (3) | 0.0226 (6) | |
N4 | 0.3283 (5) | 0.3805 (4) | 0.1585 (4) | 0.0259 (7) | |
N5 | 0.2733 (6) | 0.2488 (4) | 0.0467 (4) | 0.0268 (7) | |
C1 | 0.3091 (7) | −0.1653 (5) | 0.1350 (5) | 0.0294 (8) | |
H1A | 0.3598 | −0.1385 | 0.2454 | 0.035* | |
C2 | 0.2700 (6) | −0.0447 (4) | 0.0473 (4) | 0.0204 (7) | |
C3 | 0.1941 (6) | −0.0902 (4) | −0.1163 (4) | 0.0253 (8) | |
H3 | 0.1656 | −0.0105 | −0.1792 | 0.030* | |
C4 | 0.1608 (7) | −0.2512 (5) | −0.1860 (5) | 0.0299 (8) | |
H4 | 0.1095 | −0.2821 | −0.2962 | 0.036* | |
C5 | 0.2037 (7) | −0.3666 (5) | −0.0919 (5) | 0.0325 (9) | |
H5 | 0.1825 | −0.4770 | −0.1375 | 0.039* | |
C6 | 0.3097 (6) | 0.1261 (4) | 0.1255 (4) | 0.0203 (7) | |
O1W | 0.3115 (5) | 0.3482 (4) | 0.6228 (4) | 0.0451 (8) | |
H11W | 0.3277 | 0.2489 | 0.6316 | 0.068* | |
H12W | 0.1779 | 0.3657 | 0.5974 | 0.068* | |
Cl1 | 0.19420 (15) | 0.63743 (11) | 0.40795 (11) | 0.0307 (2) | |
O2WA | 0.2969 (13) | 0.0279 (8) | 0.5219 (8) | 0.0506 (16) | 0.54 |
H1WA | 0.3360 | 0.0607 | 0.4513 | 0.076* | 0.54 |
H2WA | 0.1618 | 0.0387 | 0.5026 | 0.076* | 0.54 |
O2WB | 0.1538 (17) | 0.0200 (10) | 0.5354 (13) | 0.068 (3) | 0.46 |
H1WB | 0.2070 | −0.0699 | 0.5168 | 0.102* | 0.46 |
H2WB | 0.0279 | 0.0002 | 0.5394 | 0.102* | 0.46 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0278 (3) | 0.0148 (3) | 0.0195 (3) | 0.0024 (2) | 0.0043 (2) | −0.0033 (2) |
N1 | 0.044 (2) | 0.0169 (15) | 0.0295 (17) | 0.0012 (13) | 0.0103 (15) | 0.0029 (13) |
N2 | 0.0311 (16) | 0.0122 (13) | 0.0221 (15) | 0.0027 (11) | 0.0069 (13) | 0.0005 (11) |
N3 | 0.0298 (16) | 0.0125 (13) | 0.0230 (15) | 0.0038 (11) | 0.0074 (13) | 0.0001 (11) |
N4 | 0.0378 (18) | 0.0158 (14) | 0.0215 (15) | 0.0019 (12) | 0.0086 (13) | 0.0007 (11) |
N5 | 0.0393 (18) | 0.0169 (14) | 0.0205 (15) | −0.0004 (13) | 0.0079 (13) | 0.0002 (12) |
C1 | 0.042 (2) | 0.0195 (18) | 0.0226 (18) | −0.0009 (15) | 0.0086 (16) | 0.0004 (14) |
C2 | 0.0228 (16) | 0.0159 (16) | 0.0210 (17) | 0.0006 (12) | 0.0082 (14) | −0.0017 (13) |
C3 | 0.0301 (19) | 0.0221 (18) | 0.0217 (18) | 0.0010 (14) | 0.0078 (15) | 0.0017 (14) |
C4 | 0.034 (2) | 0.027 (2) | 0.0216 (18) | −0.0013 (16) | 0.0075 (16) | −0.0072 (15) |
C5 | 0.038 (2) | 0.0192 (19) | 0.035 (2) | −0.0013 (16) | 0.0115 (18) | −0.0071 (16) |
C6 | 0.0215 (16) | 0.0168 (16) | 0.0204 (17) | −0.0006 (12) | 0.0064 (13) | 0.0005 (13) |
O1W | 0.0381 (17) | 0.0354 (17) | 0.061 (2) | −0.0007 (13) | 0.0175 (16) | 0.0064 (15) |
Cl1 | 0.0299 (5) | 0.0288 (5) | 0.0287 (5) | 0.0066 (4) | 0.0074 (4) | −0.0013 (4) |
O2WA | 0.069 (5) | 0.034 (3) | 0.051 (4) | 0.008 (3) | 0.023 (4) | 0.007 (3) |
O2WB | 0.079 (7) | 0.028 (4) | 0.109 (8) | −0.001 (4) | 0.051 (6) | 0.009 (4) |
Cu1—N3i | 1.984 (3) | C2—C3 | 1.380 (5) |
Cu1—N3 | 1.984 (3) | C2—C6 | 1.455 (5) |
Cu1—Cl1 | 2.3070 (12) | C3—C4 | 1.362 (5) |
Cu1—Cl1i | 2.3070 (12) | C3—H3 | 0.9300 |
Cu1—O1W | 2.390 (3) | C4—C5 | 1.365 (6) |
Cu1—O1Wi | 2.390 (3) | C4—H4 | 0.9300 |
N1—C5 | 1.312 (5) | C5—H5 | 0.9300 |
N1—C1 | 1.325 (5) | O1W—H11W | 0.8509 |
N1—H1 | 0.8600 | O1W—H12W | 0.8482 |
N2—C6 | 1.314 (4) | O2WA—H1WA | 0.8502 |
N2—N3 | 1.326 (4) | O2WA—H2WA | 0.8506 |
N3—N4 | 1.306 (4) | O2WA—H1WB | 0.9761 |
N4—N5 | 1.313 (4) | O2WB—H2WA | 0.3777 |
N5—C6 | 1.327 (5) | O2WB—H1WB | 0.8518 |
C1—C2 | 1.362 (5) | O2WB—H2WB | 0.8501 |
C1—H1A | 0.9300 | ||
N3i—Cu1—N3 | 180.000 (1) | C2—C1—H1A | 119.9 |
N3i—Cu1—Cl1 | 90.15 (9) | C1—C2—C3 | 117.9 (3) |
N3—Cu1—Cl1 | 89.85 (9) | C1—C2—C6 | 120.4 (3) |
N3i—Cu1—Cl1i | 89.85 (9) | C3—C2—C6 | 121.7 (3) |
N3—Cu1—Cl1i | 90.15 (9) | C4—C3—C2 | 120.3 (4) |
Cl1—Cu1—Cl1i | 180.000 (1) | C4—C3—H3 | 119.8 |
N3i—Cu1—O1W | 87.13 (12) | C2—C3—H3 | 119.8 |
N3—Cu1—O1W | 92.87 (12) | C3—C4—C5 | 119.1 (4) |
Cl1—Cu1—O1W | 89.21 (9) | C3—C4—H4 | 120.4 |
Cl1i—Cu1—O1W | 90.79 (9) | C5—C4—H4 | 120.4 |
N3i—Cu1—O1Wi | 92.87 (12) | N1—C5—C4 | 119.6 (3) |
N3—Cu1—O1Wi | 87.13 (12) | N1—C5—H5 | 120.2 |
Cl1—Cu1—O1Wi | 90.79 (9) | C4—C5—H5 | 120.2 |
Cl1i—Cu1—O1Wi | 89.21 (9) | N2—C6—N5 | 112.5 (3) |
O1W—Cu1—O1Wi | 180.0 | N2—C6—C2 | 124.4 (3) |
C5—N1—C1 | 122.9 (3) | N5—C6—C2 | 123.2 (3) |
C5—N1—H1 | 118.6 | Cu1—O1W—H11W | 124.2 |
C1—N1—H1 | 118.6 | Cu1—O1W—H12W | 112.4 |
C6—N2—N3 | 103.8 (3) | H11W—O1W—H12W | 110.7 |
N4—N3—N2 | 109.9 (3) | H1WA—O2WA—H2WA | 109.9 |
N4—N3—Cu1 | 122.7 (2) | H1WA—O2WA—H1WB | 131.0 |
N2—N3—Cu1 | 127.4 (2) | H2WA—O2WA—H1WB | 64.2 |
N3—N4—N5 | 109.5 (3) | H2WA—O2WB—H1WB | 97.6 |
N4—N5—C6 | 104.4 (3) | H2WA—O2WB—H2WB | 122.2 |
N1—C1—C2 | 120.2 (4) | H1WB—O2WB—H2WB | 109.3 |
N1—C1—H1A | 119.9 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N4ii | 0.86 | 1.96 | 2.763 (4) | 155 |
O1W—H11W···O2WA | 0.85 | 1.91 | 2.663 (7) | 146 |
O1W—H11W···O2WB | 0.85 | 2.08 | 2.779 (9) | 139 |
O1W—H12W···Cl1iii | 0.85 | 2.42 | 3.233 (3) | 161 |
O2WA—H1WA···N2 | 0.85 | 2.07 | 2.906 (8) | 168 |
O2WB—H1WB···Cl1ii | 0.85 | 2.46 | 3.259 (9) | 156 |
O2WB—H2WB···O2WBiv | 0.85 | 1.14 | 1.89 (2) | 143 |
Symmetry codes: (ii) x, y−1, z; (iii) −x, −y+1, −z+1; (iv) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [CuCl2(C6H5N5)2(H2O)2]·2H2O |
Mr | 500.80 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 6.5484 (13), 8.3348 (17), 9.1215 (18) |
α, β, γ (°) | 99.54 (3), 110.22 (3), 91.73 (3) |
V (Å3) | 458.64 (19) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.53 |
Crystal size (mm) | 0.15 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.85, 1.00 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4880, 2103, 1953 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.114, 1.31 |
No. of reflections | 2103 |
No. of parameters | 142 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.43 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N4i | 0.86 | 1.96 | 2.763 (4) | 154.7 |
O1W—H11W···O2WA | 0.85 | 1.91 | 2.663 (7) | 146.2 |
O1W—H11W···O2WB | 0.85 | 2.08 | 2.779 (9) | 138.9 |
O1W—H12W···Cl1ii | 0.85 | 2.42 | 3.233 (3) | 161.0 |
O2WA—H1WA···N2 | 0.85 | 2.07 | 2.906 (8) | 167.9 |
O2WB—H1WB···Cl1i | 0.85 | 2.46 | 3.259 (9) | 155.7 |
O2WB—H2WB···O2WBiii | 0.85 | 1.14 | 1.89 (2) | 143.3 |
Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z+1; (iii) −x, −y, −z+1. |
Acknowledgements
This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.
References
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349. Web of Science CSD CrossRef CAS Google Scholar
Chen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010–4012. Web of Science CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346–5347. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948. Web of Science CSD CrossRef Google Scholar
Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464. Web of Science CSD CrossRef CAS Google Scholar
Liu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31–34. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285. Web of Science CSD CrossRef PubMed CAS Google Scholar
Xie, Y.-R., Xiong, R.-G., Xue, X., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2002). Inorg. Chem. 41, 3323–3326. Web of Science CSD CrossRef PubMed CAS Google Scholar
Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712–3715. Web of Science CSD CrossRef Google Scholar
Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121. Web of Science CSD CrossRef CAS Google Scholar
Zhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem. 630, 1367–1370. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The construction of metal-organic coordination compounds has attracted much attention owing to the potential functions, such as permittivity, fluorescence, magnetism and optical properties. (Chen et al., 2000; Chen et al., 2001; Fu et al., 2007; Fu & Xiong 2008; Liu et al., 1999; Xie et al., 2003; Xie et al., 2002; Zhang et al., 2001; Zhao et al., 2004) Tetrazole compounds are a class of excellent ligands for the construction of novel metal-organic frameworks, because of its various coordination modes. (Wang, et al. 2005; Fu et al., 2008). We report here the crystal structure of the title compound, Diaqua-dichlorido[pyridinio-3-(2H-tetrazolato)-κN] copper(II) dihydrate.
The CuII cation, located on an inversion center, is coordinated by two Cl- ions, two N atoms from two pyridinio-4-(2H-tetrazolate) zwitterions and two O atoms from two water molecules in a distorted octahedral geometry. The pyridine N atom of the organic ligand is protonated. The pyridinium and tetrazolate rings are essentially coplanar, with a dihedral angle of 0.76 (1)°. The geometric parameters of the tetrazolate ring are comparable to those in related molecules (Wang, et al. 2005; Fu et al., 2008).
The molecules are linked into a two-dimensional sheet parallel to the (0 0 1) plane by intermolecular N—H···N, O-H···N, O-H···O and O-H···Cl hydrogen bonds involving the pydine nitrogen and the coordinated and free water molecules. (Table 1 and Fig.2).