metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­di­chlorido[5-(3-pyridinio)tetra­zolato-κN2]copper(II) dihydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 26 June 2009; accepted 19 August 2009; online 9 September 2009)

The title compound, [CuCl2(C6H5N5)2(H2O)2]·2H2O, was synthesized by hydro­thermal reaction of CuCl2 with 3-(2H-tetra­zol-5-yl)pyridine. The CuII cation, located on an inversion center, is coordinated by two Cl ions, two N atoms from two 5-(3-pyridinio)tetra­zolate zwitterions and two O atoms from two water mol­ecules in a distorted octa­hedral geometry. In the crystal, mol­ecules are linked into a two-dimensional sheet parallel to (001) by N—H⋯N, O—H⋯N, O—H⋯O and O—H⋯Cl hydrogen bonds involving the pyridinium N atom, the Cl atoms and the coordinated and free water mol­ecules. The latter are disordered over two positions in a 0.54:0.46 ratio.

Related literature

For general background to metal-organic coordination compounds, see: Chen et al. (2000[Chen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010-4012.], 2001[Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346-349.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]); Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Liu et al. (1999[Liu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31-34.]); Xie et al. (2002[Xie, Y.-R., Xiong, R.-G., Xue, X., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2002). Inorg. Chem. 41, 3323-3326.], 2003[Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712-3715.]); Zhang et al. (2001[Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118-4121.]); Zhao et al. (2004[Zhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem. 630, 1367-1370.]). For related structures, see: Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]); Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C6H5N5)2(H2O)2]·2H2O

  • Mr = 500.80

  • Triclinic, [P \overline 1]

  • a = 6.5484 (13) Å

  • b = 8.3348 (17) Å

  • c = 9.1215 (18) Å

  • α = 99.54 (3)°

  • β = 110.22 (3)°

  • γ = 91.73 (3)°

  • V = 458.64 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 298 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.85, Tmax = 1.00 (expected range = 0.729–0.858)

  • 4880 measured reflections

  • 2103 independent reflections

  • 1953 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.114

  • S = 1.31

  • 2103 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.86 1.96 2.763 (4) 155
O1W—H11W⋯O2WA 0.85 1.91 2.663 (7) 146
O1W—H11W⋯O2WB 0.85 2.08 2.779 (9) 139
O1W—H12W⋯Cl1ii 0.85 2.42 3.233 (3) 161
O2WA—H1WA⋯N2 0.85 2.07 2.906 (8) 168
O2WB—H1WB⋯Cl1i 0.85 2.46 3.259 (9) 156
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of metal-organic coordination compounds has attracted much attention owing to the potential functions, such as permittivity, fluorescence, magnetism and optical properties. (Chen et al., 2000; Chen et al., 2001; Fu et al., 2007; Fu & Xiong 2008; Liu et al., 1999; Xie et al., 2003; Xie et al., 2002; Zhang et al., 2001; Zhao et al., 2004) Tetrazole compounds are a class of excellent ligands for the construction of novel metal-organic frameworks, because of its various coordination modes. (Wang, et al. 2005; Fu et al., 2008). We report here the crystal structure of the title compound, Diaqua-dichlorido[pyridinio-3-(2H-tetrazolato)-κN] copper(II) dihydrate.

The CuII cation, located on an inversion center, is coordinated by two Cl- ions, two N atoms from two pyridinio-4-(2H-tetrazolate) zwitterions and two O atoms from two water molecules in a distorted octahedral geometry. The pyridine N atom of the organic ligand is protonated. The pyridinium and tetrazolate rings are essentially coplanar, with a dihedral angle of 0.76 (1)°. The geometric parameters of the tetrazolate ring are comparable to those in related molecules (Wang, et al. 2005; Fu et al., 2008).

The molecules are linked into a two-dimensional sheet parallel to the (0 0 1) plane by intermolecular N—H···N, O-H···N, O-H···O and O-H···Cl hydrogen bonds involving the pydine nitrogen and the coordinated and free water molecules. (Table 1 and Fig.2).

Related literature top

For general background to metal-organic coordination compounds, see: Chen et al. (2000, 2001); Fu & Xiong (2008); Fu et al. (2007); Liu et al. (1999); Xie et al. (2002, 2003); Zhang et al. (2001); Zhao et al. (2004). For related structures, see: Wang et al. (2005); Fu et al. (2008).

Experimental top

A mixture of 3-(2H-tetrazol-5-yl)pyridine (0.2 mmol), CuCl2 (0.4 mmol), distilled water (1 ml) and a few drops of HCl (6 mol/L) was sealed in a glass tube and maintained at 323 K. Blue block-shaped crystals suitable for X-ray analysis were obtained after 3 d.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.39 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, these H atoms were treated as riding on their parent O atom.

The free water molecule was found to be roughly staistically disoredered over two positions. H atoms for this disordered molecules were treated as above.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. Free water molecules have been omitted for clarity. [Symmetry codes: (i) -x+1, -y+1, -z+1].
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis, showing the two dimensionnal hydrogen-bonded network. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.
Diaquadichlorido[5-(3-pyridinio)tetrazolato-κN2]copper(II) dihydrate top
Crystal data top
[CuCl2(C6H5N5)2(H2O)2]·2H2OZ = 1
Mr = 500.80F(000) = 255
Triclinic, P1Dx = 1.813 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5484 (13) ÅCell parameters from 1953 reflections
b = 8.3348 (17) Åθ = 3.1–27.5°
c = 9.1215 (18) ŵ = 1.53 mm1
α = 99.54 (3)°T = 298 K
β = 110.22 (3)°Block, blue
γ = 91.73 (3)°0.15 × 0.10 × 0.10 mm
V = 458.64 (19) Å3
Data collection top
Rigaku Mercury2
diffractometer
2103 independent reflections
Radiation source: fine-focus sealed tube1953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD profile fitting scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.85, Tmax = 1.00l = 1111
4880 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.31 w = 1/[σ2(Fo2) + 1.0933P]
where P = (Fo2 + 2Fc2)/3
2103 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[CuCl2(C6H5N5)2(H2O)2]·2H2Oγ = 91.73 (3)°
Mr = 500.80V = 458.64 (19) Å3
Triclinic, P1Z = 1
a = 6.5484 (13) ÅMo Kα radiation
b = 8.3348 (17) ŵ = 1.53 mm1
c = 9.1215 (18) ÅT = 298 K
α = 99.54 (3)°0.15 × 0.10 × 0.10 mm
β = 110.22 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2103 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1953 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 1.00Rint = 0.037
4880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.31Δρmax = 0.33 e Å3
2103 reflectionsΔρmin = 0.43 e Å3
142 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.50000.50000.02259 (18)
N10.2750 (6)0.3207 (4)0.0634 (4)0.0311 (7)
H10.30090.39480.12110.037*
N20.3845 (5)0.1765 (3)0.2805 (4)0.0228 (6)
N30.3946 (5)0.3381 (3)0.2979 (3)0.0226 (6)
N40.3283 (5)0.3805 (4)0.1585 (4)0.0259 (7)
N50.2733 (6)0.2488 (4)0.0467 (4)0.0268 (7)
C10.3091 (7)0.1653 (5)0.1350 (5)0.0294 (8)
H1A0.35980.13850.24540.035*
C20.2700 (6)0.0447 (4)0.0473 (4)0.0204 (7)
C30.1941 (6)0.0902 (4)0.1163 (4)0.0253 (8)
H30.16560.01050.17920.030*
C40.1608 (7)0.2512 (5)0.1860 (5)0.0299 (8)
H40.10950.28210.29620.036*
C50.2037 (7)0.3666 (5)0.0919 (5)0.0325 (9)
H50.18250.47700.13750.039*
C60.3097 (6)0.1261 (4)0.1255 (4)0.0203 (7)
O1W0.3115 (5)0.3482 (4)0.6228 (4)0.0451 (8)
H11W0.32770.24890.63160.068*
H12W0.17790.36570.59740.068*
Cl10.19420 (15)0.63743 (11)0.40795 (11)0.0307 (2)
O2WA0.2969 (13)0.0279 (8)0.5219 (8)0.0506 (16)0.54
H1WA0.33600.06070.45130.076*0.54
H2WA0.16180.03870.50260.076*0.54
O2WB0.1538 (17)0.0200 (10)0.5354 (13)0.068 (3)0.46
H1WB0.20700.06990.51680.102*0.46
H2WB0.02790.00020.53940.102*0.46
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0278 (3)0.0148 (3)0.0195 (3)0.0024 (2)0.0043 (2)0.0033 (2)
N10.044 (2)0.0169 (15)0.0295 (17)0.0012 (13)0.0103 (15)0.0029 (13)
N20.0311 (16)0.0122 (13)0.0221 (15)0.0027 (11)0.0069 (13)0.0005 (11)
N30.0298 (16)0.0125 (13)0.0230 (15)0.0038 (11)0.0074 (13)0.0001 (11)
N40.0378 (18)0.0158 (14)0.0215 (15)0.0019 (12)0.0086 (13)0.0007 (11)
N50.0393 (18)0.0169 (14)0.0205 (15)0.0004 (13)0.0079 (13)0.0002 (12)
C10.042 (2)0.0195 (18)0.0226 (18)0.0009 (15)0.0086 (16)0.0004 (14)
C20.0228 (16)0.0159 (16)0.0210 (17)0.0006 (12)0.0082 (14)0.0017 (13)
C30.0301 (19)0.0221 (18)0.0217 (18)0.0010 (14)0.0078 (15)0.0017 (14)
C40.034 (2)0.027 (2)0.0216 (18)0.0013 (16)0.0075 (16)0.0072 (15)
C50.038 (2)0.0192 (19)0.035 (2)0.0013 (16)0.0115 (18)0.0071 (16)
C60.0215 (16)0.0168 (16)0.0204 (17)0.0006 (12)0.0064 (13)0.0005 (13)
O1W0.0381 (17)0.0354 (17)0.061 (2)0.0007 (13)0.0175 (16)0.0064 (15)
Cl10.0299 (5)0.0288 (5)0.0287 (5)0.0066 (4)0.0074 (4)0.0013 (4)
O2WA0.069 (5)0.034 (3)0.051 (4)0.008 (3)0.023 (4)0.007 (3)
O2WB0.079 (7)0.028 (4)0.109 (8)0.001 (4)0.051 (6)0.009 (4)
Geometric parameters (Å, º) top
Cu1—N3i1.984 (3)C2—C31.380 (5)
Cu1—N31.984 (3)C2—C61.455 (5)
Cu1—Cl12.3070 (12)C3—C41.362 (5)
Cu1—Cl1i2.3070 (12)C3—H30.9300
Cu1—O1W2.390 (3)C4—C51.365 (6)
Cu1—O1Wi2.390 (3)C4—H40.9300
N1—C51.312 (5)C5—H50.9300
N1—C11.325 (5)O1W—H11W0.8509
N1—H10.8600O1W—H12W0.8482
N2—C61.314 (4)O2WA—H1WA0.8502
N2—N31.326 (4)O2WA—H2WA0.8506
N3—N41.306 (4)O2WA—H1WB0.9761
N4—N51.313 (4)O2WB—H2WA0.3777
N5—C61.327 (5)O2WB—H1WB0.8518
C1—C21.362 (5)O2WB—H2WB0.8501
C1—H1A0.9300
N3i—Cu1—N3180.000 (1)C2—C1—H1A119.9
N3i—Cu1—Cl190.15 (9)C1—C2—C3117.9 (3)
N3—Cu1—Cl189.85 (9)C1—C2—C6120.4 (3)
N3i—Cu1—Cl1i89.85 (9)C3—C2—C6121.7 (3)
N3—Cu1—Cl1i90.15 (9)C4—C3—C2120.3 (4)
Cl1—Cu1—Cl1i180.000 (1)C4—C3—H3119.8
N3i—Cu1—O1W87.13 (12)C2—C3—H3119.8
N3—Cu1—O1W92.87 (12)C3—C4—C5119.1 (4)
Cl1—Cu1—O1W89.21 (9)C3—C4—H4120.4
Cl1i—Cu1—O1W90.79 (9)C5—C4—H4120.4
N3i—Cu1—O1Wi92.87 (12)N1—C5—C4119.6 (3)
N3—Cu1—O1Wi87.13 (12)N1—C5—H5120.2
Cl1—Cu1—O1Wi90.79 (9)C4—C5—H5120.2
Cl1i—Cu1—O1Wi89.21 (9)N2—C6—N5112.5 (3)
O1W—Cu1—O1Wi180.0N2—C6—C2124.4 (3)
C5—N1—C1122.9 (3)N5—C6—C2123.2 (3)
C5—N1—H1118.6Cu1—O1W—H11W124.2
C1—N1—H1118.6Cu1—O1W—H12W112.4
C6—N2—N3103.8 (3)H11W—O1W—H12W110.7
N4—N3—N2109.9 (3)H1WA—O2WA—H2WA109.9
N4—N3—Cu1122.7 (2)H1WA—O2WA—H1WB131.0
N2—N3—Cu1127.4 (2)H2WA—O2WA—H1WB64.2
N3—N4—N5109.5 (3)H2WA—O2WB—H1WB97.6
N4—N5—C6104.4 (3)H2WA—O2WB—H2WB122.2
N1—C1—C2120.2 (4)H1WB—O2WB—H2WB109.3
N1—C1—H1A119.9
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4ii0.861.962.763 (4)155
O1W—H11W···O2WA0.851.912.663 (7)146
O1W—H11W···O2WB0.852.082.779 (9)139
O1W—H12W···Cl1iii0.852.423.233 (3)161
O2WA—H1WA···N20.852.072.906 (8)168
O2WB—H1WB···Cl1ii0.852.463.259 (9)156
O2WB—H2WB···O2WBiv0.851.141.89 (2)143
Symmetry codes: (ii) x, y1, z; (iii) x, y+1, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[CuCl2(C6H5N5)2(H2O)2]·2H2O
Mr500.80
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.5484 (13), 8.3348 (17), 9.1215 (18)
α, β, γ (°)99.54 (3), 110.22 (3), 91.73 (3)
V3)458.64 (19)
Z1
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.85, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
4880, 2103, 1953
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.114, 1.31
No. of reflections2103
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.43

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.861.962.763 (4)154.7
O1W—H11W···O2WA0.851.912.663 (7)146.2
O1W—H11W···O2WB0.852.082.779 (9)138.9
O1W—H12W···Cl1ii0.852.423.233 (3)161.0
O2WA—H1WA···N20.852.072.906 (8)167.9
O2WB—H1WB···Cl1i0.852.463.259 (9)155.7
O2WB—H2WB···O2WBiii0.851.141.89 (2)143.3
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1; (iii) x, y, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010–4012.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31–34.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXie, Y.-R., Xiong, R.-G., Xue, X., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2002). Inorg. Chem. 41, 3323–3326.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712–3715.  Web of Science CSD CrossRef Google Scholar
First citationZhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem. 630, 1367–1370.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds