organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Dimeth­­oxy-2,2′-[(E,E′)-(4-chloro-m-phenyl­ene)bis­­(nitrilo­methyl­­idyne)]diphenol

aSchool of Chemical Sciences and Food Technology, Univeriti Kebangsaan Malaysia, UKM 43500 Bangi Selangor. Malaysia, and bDepartment of Chemistry, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*Correspondence e-mail: hadariah@salam.uitm.edu.my

(Received 4 September 2009; accepted 15 September 2009; online 30 September 2009)

The title compound, C22H19ClN2O4, has the appearance of a warped butterfly. One 2-hydr­oxy-3-methoxy­benzyl­idene­amino fragment is planar [with a maximum deviation of 0.056 (3) Å] and forms a dihedral angle of 9.85 (9)° with the central benzene ring. The other fragment is not planar; however, the methoxy­phenol group is planar [with the maximum deviation of 0.033 (2) Å] and makes a dihedral angle of 41.7 (3)° with the central benzene ring. The mol­ecule is stabilized by intra­molecular O—H⋯N hydrogen bonding. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonding and C—H⋯π inter­actions.

Related literature

For the biological activity of Schiff bases, see: Aranha et al. (2007[Aranha, P. E., dos Santos, M. P., Romera, S. & Dockal, E. R. (2007). Polyhedron, 26, 1373-1382.]) and for the corrosion inhibition potential of Schiff bases, see: Chetouani et al. (2005[Chetouani, A., Hammouti, B., Benhadda, T. & Daoudi, M. (2005). Appl. Surface Sci. 249, 375-385.]). For related structures, see: Hernández-Molina et al. (1997[Hernández-Molina, R., Mederos, A., Gili, P., Domínguez, S., Lloret, F., Cano, J., Julve, M., Ruiz-Pérez, C. & Solans, X. (1997). J. Chem. Soc. Dalton Trans. pp. 4327-4334.]); Torayama et al. (1997[Torayama, H., Nishide, T., Asada, H., Fujiwara, M. & Matsushita, T. (1997). Polyhedron, 16, 3787-3794.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19ClN2O4

  • Mr = 410.84

  • Monoclinic, P 21 /n

  • a = 9.900 (2) Å

  • b = 6.8589 (12) Å

  • c = 28.830 (6) Å

  • β = 94.659 (4)°

  • V = 1951.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.41 × 0.40 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.975

  • 12204 measured reflections

  • 4049 independent reflections

  • 2758 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.131

  • S = 1.06

  • 4049 reflections

  • 272 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.83 (3) 1.81 (3) 2.586 (3) 155 (3)
O4—H4⋯N2 0.82 (3) 1.86 (3) 2.588 (3) 148 (3)
C11—H11⋯O4i 0.93 2.59 3.392 (3) 145
C3—H3⋯Cg3ii 0.93 2.89 3.635 (3) 138
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x, y+1, z. Cg3 is the centroid of the C16–C21 ring.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Continous studies on Schiff bases are driven by their biological activities such as antimicrobial (Aranha et al., 2007) and chemical properties such as corrosion inhibition (Chetouani et al., 2005). Some m-phenylenediamine derived Schiff bases such as N,N'-disalicylidene-1,3-diiminobenzene and their complexes have been reported (Hernández-Molina et al., 1997; Torayama et al., 1997). The present compound is also a m-phenylenediamine derived Schiff base but with a chloro substituent at the ortho position. The Schiff base groups that attached to the 1,3-positions are 2-iminomethyl-6-methoxyphenols (Fig.1).

The whole molecule appears like a warped butterfly. The 2-imino methyl-6-methoxyphenol right wing N1/C7—C14)/O1/O2 is planar with a maximum deviation of 0.056 (3)Å for C14 atom from the least square plane. However, the left wing is twisted with the C15—N2—C4—C3 torsion angle of 41.7 (3)° compared to 9.1 (3)°. for the C7—N1—C6—C5 torsion angle of the right wing. The methoxyphenol O3/O4/(C16—C22) fragment of the left wing is planar with the maximum deviation of 0.033 (2)Å for C20 atom. As a result, the methoxyphenol groups are in opposite orientation. The central (C1—C6) benzene ring makes dihedral angle of 9.85 (9)Å with the right N1/C7—C14)/O1/O1 wing and 44.25 (9)° with the O3/O4/(C16—C22) methoxyphenol fragment. The dihedral angle between the right wing and the methoxyphenol fragment is 53.17 (7)°. The bond lengths and angles are in normal ranges (Allen et al., 1987).

There are two O—H···N intramolecular hydrogen bonds (Table 1). In the crystal structure, the molecule is stabilized by weak C—H···O intermolecular hydrogen bonds, C—H···π interaction (Tables 1) and van der Waal forces.

Related literature top

For the biological activity of Schiff bases, see: Aranha et al. (2007); Chetouani et al. (2005). For related structures, see: Hernández-Molina et al. (1997); Torayama et al. (1997). For bond-length data, see: Allen et al. (1987). Cg3 is the centroid of the C16–C21 ring.

Experimental top

The compound was synthesized by refluxing 1,3-diamino-4-chlorobenzene (0.428 g, 3 mmol) with 3-methoxysalicylaldehyde (0.912 g, 6 mmol) in ethanol for 24 h. The precipitate obtained was filtered off, washed with ethanol and dried in-vacuo. It was recrystallized from a mixed solvent of chloroform and ethanol (1:1) to afford brownish yellow single crystals. Yield 92%. Melting point 468–470 K. Analytical calculation for C22H19ClN2O4 [Cl-mpd(o-van)2]: C, 64.31; H, 4.66; N, 6.82. Found: C, 64.18; H, 4.65; N, 6.93. IR (cm-1): ν(C=N) 1611.7 (m), ν(C—O—C) 1253.9 (s), ν(C—OH) 1212.7 (w), ν(C—Cl) 1099.8 (w). 1H NMR (CDCl3, 300 MHz, p.p.m.): δ = 13.5002 (1H, s, OH), 13.2536 (1H, s, OH), 8.737 (1H, s, HC=N), 8.684 (1H, s, HC=N), 7.220–6.935)(9H, m, H-aromatic), 3.977 (3H, s, OCH3), 3.969 (3H, s, OCH3).

Refinement top

H atoms on C were positioned geometrically with C—H 0.93, 0.96 Å, for aromatic and methyl H atoms respectively, and constrained to ride on their parent atoms with Uiso(H)= xUeq(C) where x=1.5 for methyl H and x=1.2 for aromatic H atoms. The H atom attached to oxygen atoms were located from the Fourier difference map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of compound, (1), with displacement ellipsoid drawn at the 50% probablity level. H atoms are represented as small sphere of arbitrary radii.
6,6'-Dimethoxy-2,2'-[(E,E')-(4-chloro-m- phenylene)bis(nitrilomethylidyne)]diphenol top
Crystal data top
C22H19ClN2O4F(000) = 856
Mr = 410.84Dx = 1.399 Mg m3
Monoclinic, P21/nMelting point = 468.0–470.0 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.900 (2) ÅCell parameters from 2429 reflections
b = 6.8589 (12) Åθ = 1.4–26.5°
c = 28.830 (6) ŵ = 0.23 mm1
β = 94.659 (4)°T = 298 K
V = 1951.2 (7) Å3Block, yellow
Z = 40.41 × 0.40 × 0.11 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4049 independent reflections
Radiation source: fine-focus sealed tube2758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 83.66 pixels mm-1θmax = 26.5°, θmin = 1.4°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 87
Tmin = 0.912, Tmax = 0.975l = 2936
12204 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.4146P]
where P = (Fo2 + 2Fc2)/3
4049 reflections(Δ/σ)max = 0.002
272 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = 0.17 e Å3
Crystal data top
C22H19ClN2O4V = 1951.2 (7) Å3
Mr = 410.84Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.900 (2) ŵ = 0.23 mm1
b = 6.8589 (12) ÅT = 298 K
c = 28.830 (6) Å0.41 × 0.40 × 0.11 mm
β = 94.659 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4049 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2758 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.975Rint = 0.030
12204 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0552 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.21 e Å3
4049 reflectionsΔρmin = 0.17 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4334 (2)0.6076 (3)1.14002 (7)0.0751 (5)
O20.5923 (2)0.6402 (2)1.07204 (7)0.0671 (5)
O30.90619 (18)0.3720 (3)0.77614 (6)0.0682 (5)
O40.86271 (17)0.0603 (3)0.82460 (7)0.0655 (5)
Cl10.83872 (7)0.86091 (8)1.00563 (2)0.0658 (2)
N20.9571 (2)0.2143 (3)0.87964 (6)0.0560 (5)
N10.71450 (19)0.4773 (2)1.00623 (7)0.0496 (5)
C50.8366 (2)0.3491 (3)0.94045 (8)0.0523 (6)
H50.78860.23250.94020.063*
C60.8069 (2)0.4937 (3)0.97170 (8)0.0470 (5)
C10.8754 (2)0.6715 (3)0.96890 (8)0.0497 (6)
C20.9714 (3)0.6982 (3)0.93761 (8)0.0594 (7)
H2A1.01530.81770.93630.071*
C31.0032 (3)0.5503 (4)0.90814 (8)0.0602 (7)
H31.06950.56830.88740.072*
C40.9347 (2)0.3727 (3)0.90976 (8)0.0519 (6)
C70.6600 (2)0.3163 (3)1.01624 (8)0.0509 (6)
H70.67790.20590.99900.061*
C80.5717 (2)0.2992 (3)1.05322 (8)0.0474 (5)
C90.5173 (3)0.1175 (3)1.06386 (9)0.0572 (6)
H90.53820.00821.04680.069*
C100.4341 (3)0.0992 (3)1.09897 (10)0.0633 (7)
H100.39870.02221.10570.076*
C110.4019 (2)0.2612 (4)1.12488 (9)0.0590 (6)
H110.34320.24821.14830.071*
C120.4565 (2)0.4408 (3)1.11604 (8)0.0542 (6)
C130.5416 (2)0.4621 (3)1.08000 (8)0.0491 (6)
C151.0764 (3)0.1673 (4)0.86971 (8)0.0591 (6)
H151.14970.24110.88190.071*
C161.1010 (2)0.0026 (4)0.84010 (8)0.0549 (6)
C171.2336 (3)0.0564 (5)0.83404 (10)0.0728 (8)
H171.30610.01630.84730.087*
C181.2577 (3)0.2191 (5)0.80892 (10)0.0788 (8)
H181.34630.25820.80560.095*
C191.1499 (3)0.3269 (4)0.78828 (9)0.0687 (7)
H191.16730.43660.77080.082*
C201.0186 (2)0.2735 (4)0.79340 (8)0.0549 (6)
C210.9926 (2)0.1070 (4)0.81969 (8)0.0521 (6)
C140.3549 (3)0.5911 (5)1.17851 (11)0.0893 (9)
H14A0.26870.53411.16870.134*
H14B0.34120.71811.19130.134*
H14C0.40130.50981.20180.134*
C220.9258 (3)0.5492 (4)0.75161 (11)0.0839 (9)
H22A0.97250.52210.72440.126*
H22B0.83940.60700.74250.126*
H22C0.97870.63770.77140.126*
H40.861 (3)0.027 (4)0.8438 (9)0.102 (12)*
H20.643 (3)0.620 (5)1.0511 (9)0.110 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0940 (14)0.0583 (11)0.0763 (12)0.0002 (9)0.0263 (11)0.0095 (9)
O20.0916 (14)0.0332 (9)0.0793 (13)0.0106 (9)0.0236 (11)0.0061 (8)
O30.0633 (11)0.0731 (12)0.0684 (11)0.0013 (9)0.0056 (9)0.0191 (9)
O40.0494 (11)0.0733 (12)0.0736 (12)0.0005 (9)0.0040 (9)0.0192 (10)
Cl10.0819 (5)0.0395 (3)0.0753 (4)0.0074 (3)0.0026 (3)0.0034 (3)
N20.0637 (14)0.0580 (12)0.0462 (11)0.0071 (10)0.0044 (10)0.0001 (10)
N10.0562 (12)0.0357 (10)0.0563 (11)0.0062 (8)0.0013 (10)0.0008 (8)
C50.0593 (15)0.0426 (12)0.0538 (13)0.0104 (11)0.0028 (12)0.0013 (11)
C60.0521 (14)0.0405 (12)0.0471 (13)0.0022 (10)0.0045 (11)0.0041 (10)
C10.0610 (15)0.0372 (12)0.0490 (13)0.0042 (10)0.0064 (11)0.0058 (10)
C20.0772 (17)0.0457 (13)0.0542 (14)0.0173 (12)0.0012 (13)0.0103 (12)
C30.0732 (17)0.0589 (15)0.0488 (14)0.0128 (13)0.0062 (12)0.0096 (12)
C40.0626 (15)0.0505 (13)0.0419 (12)0.0081 (11)0.0005 (11)0.0032 (11)
C70.0577 (14)0.0345 (12)0.0599 (14)0.0004 (10)0.0015 (12)0.0025 (10)
C80.0480 (13)0.0359 (11)0.0572 (14)0.0027 (9)0.0013 (11)0.0029 (10)
C90.0669 (16)0.0373 (12)0.0669 (16)0.0074 (11)0.0029 (13)0.0001 (11)
C100.0705 (18)0.0450 (14)0.0734 (17)0.0167 (12)0.0005 (14)0.0080 (12)
C110.0537 (15)0.0626 (16)0.0606 (15)0.0073 (12)0.0044 (12)0.0092 (13)
C120.0563 (15)0.0475 (13)0.0581 (15)0.0012 (11)0.0008 (12)0.0016 (12)
C130.0527 (14)0.0352 (12)0.0586 (14)0.0027 (10)0.0001 (12)0.0020 (10)
C150.0621 (17)0.0682 (16)0.0466 (13)0.0132 (13)0.0011 (12)0.0046 (12)
C160.0527 (15)0.0685 (16)0.0436 (13)0.0057 (12)0.0045 (11)0.0049 (12)
C170.0521 (17)0.099 (2)0.0667 (17)0.0091 (15)0.0034 (14)0.0022 (17)
C180.0530 (17)0.108 (2)0.0767 (19)0.0087 (16)0.0120 (15)0.0070 (19)
C190.0680 (18)0.0807 (19)0.0584 (16)0.0079 (15)0.0111 (14)0.0029 (14)
C200.0537 (15)0.0703 (16)0.0409 (12)0.0011 (13)0.0057 (11)0.0028 (12)
C210.0479 (14)0.0653 (15)0.0433 (12)0.0004 (12)0.0057 (11)0.0039 (11)
C140.101 (2)0.092 (2)0.078 (2)0.0127 (19)0.0249 (18)0.0081 (17)
C220.089 (2)0.080 (2)0.082 (2)0.0068 (17)0.0002 (17)0.0270 (17)
Geometric parameters (Å, º) top
O1—C121.366 (3)C8—C131.403 (3)
O1—C141.410 (3)C9—C101.361 (4)
O2—C131.348 (3)C9—H90.9300
O2—H20.83 (3)C10—C111.390 (4)
O3—C201.361 (3)C10—H100.9300
O3—C221.427 (3)C11—C121.378 (3)
O4—C211.343 (3)C11—H110.9300
O4—H40.82 (2)C12—C131.397 (3)
Cl1—C11.733 (2)C15—C161.448 (3)
N2—C151.279 (3)C15—H150.9300
N2—C41.419 (3)C16—C171.398 (4)
N1—C71.273 (3)C16—C211.401 (3)
N1—C61.410 (3)C17—C181.362 (4)
C5—C41.376 (3)C17—H170.9300
C5—C61.388 (3)C18—C191.391 (4)
C5—H50.9300C18—H180.9300
C6—C11.401 (3)C19—C201.370 (4)
C1—C21.375 (3)C19—H190.9300
C2—C31.377 (3)C20—C211.406 (3)
C2—H2A0.9300C14—H14A0.9600
C3—C41.397 (3)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C7—C81.438 (3)C22—H22A0.9600
C7—H70.9300C22—H22B0.9600
C8—C91.402 (3)C22—H22C0.9600
C12—O1—C14117.2 (2)O1—C12—C11124.8 (2)
C13—O2—H2103 (2)O1—C12—C13115.1 (2)
C20—O3—C22117.6 (2)C11—C12—C13120.0 (2)
C21—O4—H4109 (2)O2—C13—C12118.4 (2)
C15—N2—C4121.5 (2)O2—C13—C8122.0 (2)
C7—N1—C6122.7 (2)C12—C13—C8119.6 (2)
C4—C5—C6122.1 (2)N2—C15—C16122.1 (2)
C4—C5—H5119.0N2—C15—H15119.0
C6—C5—H5119.0C16—C15—H15119.0
C5—C6—C1117.1 (2)C17—C16—C21119.2 (2)
C5—C6—N1125.8 (2)C17—C16—C15120.3 (2)
C1—C6—N1117.1 (2)C21—C16—C15120.4 (2)
C2—C1—C6121.2 (2)C18—C17—C16120.7 (3)
C2—C1—Cl1119.44 (17)C18—C17—H17119.7
C6—C1—Cl1119.39 (19)C16—C17—H17119.7
C1—C2—C3120.8 (2)C17—C18—C19120.1 (3)
C1—C2—H2A119.6C17—C18—H18120.0
C3—C2—H2A119.6C19—C18—H18120.0
C2—C3—C4119.1 (2)C20—C19—C18120.9 (3)
C2—C3—H3120.5C20—C19—H19119.6
C4—C3—H3120.5C18—C19—H19119.6
C5—C4—C3119.6 (2)O3—C20—C19125.7 (2)
C5—C4—N2117.2 (2)O3—C20—C21114.8 (2)
C3—C4—N2123.2 (2)C19—C20—C21119.5 (2)
N1—C7—C8122.2 (2)O4—C21—C16122.3 (2)
N1—C7—H7118.9O4—C21—C20118.0 (2)
C8—C7—H7118.9C16—C21—C20119.7 (2)
C9—C8—C13119.0 (2)O1—C14—H14A109.5
C9—C8—C7120.2 (2)O1—C14—H14B109.5
C13—C8—C7120.8 (2)H14A—C14—H14B109.5
C10—C9—C8120.7 (2)O1—C14—H14C109.5
C10—C9—H9119.6H14A—C14—H14C109.5
C8—C9—H9119.6H14B—C14—H14C109.5
C9—C10—C11120.3 (2)O3—C22—H22A109.5
C9—C10—H10119.8O3—C22—H22B109.5
C11—C10—H10119.8H22A—C22—H22B109.5
C12—C11—C10120.3 (2)O3—C22—H22C109.5
C12—C11—H11119.8H22A—C22—H22C109.5
C10—C11—H11119.8H22B—C22—H22C109.5
C4—C5—C6—C13.9 (3)O1—C12—C13—O20.1 (3)
C4—C5—C6—N1175.7 (2)C11—C12—C13—O2179.4 (2)
C7—N1—C6—C59.1 (3)O1—C12—C13—C8179.99 (19)
C7—N1—C6—C1170.4 (2)C11—C12—C13—C80.5 (3)
C5—C6—C1—C22.3 (3)C9—C8—C13—O2179.0 (2)
N1—C6—C1—C2177.3 (2)C7—C8—C13—O20.8 (3)
C5—C6—C1—Cl1177.84 (16)C9—C8—C13—C121.1 (3)
N1—C6—C1—Cl12.5 (3)C7—C8—C13—C12179.4 (2)
C6—C1—C2—C30.2 (4)C4—N2—C15—C16178.2 (2)
Cl1—C1—C2—C3179.66 (18)N2—C15—C16—C17173.3 (2)
C1—C2—C3—C41.2 (4)N2—C15—C16—C212.5 (4)
C6—C5—C4—C33.0 (3)C21—C16—C17—C180.5 (4)
C6—C5—C4—N2179.5 (2)C15—C16—C17—C18175.4 (3)
C2—C3—C4—C50.3 (4)C16—C17—C18—C191.1 (4)
C2—C3—C4—N2177.6 (2)C17—C18—C19—C201.0 (4)
C15—N2—C4—C5140.9 (2)C22—O3—C20—C191.8 (4)
C15—N2—C4—C341.7 (3)C22—O3—C20—C21176.1 (2)
C6—N1—C7—C8176.54 (19)C18—C19—C20—O3177.6 (2)
N1—C7—C8—C9178.1 (2)C18—C19—C20—C210.3 (4)
N1—C7—C8—C130.1 (3)C17—C16—C21—O4179.1 (2)
C13—C8—C9—C101.4 (3)C15—C16—C21—O43.3 (3)
C7—C8—C9—C10179.6 (2)C17—C16—C21—C200.2 (3)
C8—C9—C10—C110.0 (4)C15—C16—C21—C20176.1 (2)
C9—C10—C11—C121.6 (4)O3—C20—C21—O40.9 (3)
C14—O1—C12—C114.3 (4)C19—C20—C21—O4179.0 (2)
C14—O1—C12—C13176.2 (2)O3—C20—C21—C16178.4 (2)
C10—C11—C12—O1178.7 (2)C19—C20—C21—C160.3 (3)
C10—C11—C12—C131.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.83 (3)1.81 (3)2.586 (3)155 (3)
O4—H4···N20.82 (3)1.86 (3)2.588 (3)148 (3)
C11—H11···O4i0.932.593.392 (3)145
C3—H3···Cg3ii0.932.893.635 (3)138
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H19ClN2O4
Mr410.84
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.900 (2), 6.8589 (12), 28.830 (6)
β (°) 94.659 (4)
V3)1951.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.41 × 0.40 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.912, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
12204, 4049, 2758
Rint0.030
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.131, 1.06
No. of reflections4049
No. of parameters272
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.83 (3)1.81 (3)2.586 (3)155 (3)
O4—H4···N20.82 (3)1.86 (3)2.588 (3)148 (3)
C11—H11···O4i0.932.593.392 (3)145
C3—H3···Cg3ii0.932.893.635 (3)138
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1, z.
 

Acknowledgements

The authors wish to thank both Universiti Teknologi MARA and Universiti Kebangsaan Malaysia for the facilities and the Malaysian Ministry of Higher Education for the research grant FRGS UiTM 5/3/FST/(12/2008).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAranha, P. E., dos Santos, M. P., Romera, S. & Dockal, E. R. (2007). Polyhedron, 26, 1373–1382.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChetouani, A., Hammouti, B., Benhadda, T. & Daoudi, M. (2005). Appl. Surface Sci. 249, 375–385.  Web of Science CrossRef CAS Google Scholar
First citationHernández-Molina, R., Mederos, A., Gili, P., Domínguez, S., Lloret, F., Cano, J., Julve, M., Ruiz-Pérez, C. & Solans, X. (1997). J. Chem. Soc. Dalton Trans. pp. 4327–4334.  CSD CrossRef Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorayama, H., Nishide, T., Asada, H., Fujiwara, M. & Matsushita, T. (1997). Polyhedron, 16, 3787–3794.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds