organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Eth­­oxy-4-{[(2-nitro­phen­yl)hydrazono]meth­yl}phenol

aKey Laboratory of Surface and Interface Science of Henan, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: yinck@263.net

(Received 11 September 2009; accepted 12 September 2009; online 30 September 2009)

The title compound, C15H15N3O4, a Schiff base, was obtained from a condensation reaction of 3-eth­oxy-4-hydroxy­benzaldehyde and 2-nitro­phenyl­hydrazine. The mol­ecule is approximately planar, the largest deviation from the mean plane being 0.1449 (16) Å. An intramolecular N—H⋯O inter­action is also present. In the crystal, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules, forming chain parallel to the b axis.

Related literature

For the role played by Schiff bases in the development of various proteins and enzymes, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3O4

  • Mr = 301.30

  • Monoclinic, P 21 /c

  • a = 14.586 (3) Å

  • b = 5.002 (1) Å

  • c = 19.894 (4) Å

  • β = 102.40 (3)°

  • V = 1417.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.982

  • 5585 measured reflections

  • 2762 independent reflections

  • 1264 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.071

  • S = 0.72

  • 2762 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 1.99 2.610 (2) 128
O4—H11⋯O4i 0.82 2.21 2.9842 (16) 159
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our interest in the study of the coordination chemistry of Schiff bases, we synthesized the title compound and determined its crystal structure.

The whole molecule is roughly planar with the largest deviation from the mean plane being -0.1449 (16)Å at C15 (Fig. 1).

Intermolecular O—H···O hydrogen bonds link the molecule to form chain parallel to the b axis (Table 1, Fig. 2).

Related literature top

For the role played by Schiff bases in the development of various

proteins and enzymes, see: Kahwa et al. (1986); Santos et al. (2001).

Experimental top

2-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml), The mixture was stirred for several minitutes at 351k, 3-Ethoxy-4-hydroxybenzaldehyde (1 mmol, 0.166 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol, red single crystals of (I) was obtained after 3 d.

Refinement top

All H atoms were positioned geometrically and refined as riding with C—H=0.93 (aromatic), 0.97(methylene), 0.96 Å(methyl) and N—H=0.86 Å, with Uiso(H)=1.2Ueq(CH, CH2 or NH) and Uiso(H)=1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of of (I) with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view of (I) showing the formation of a chain through O-H···O hydrogen bonds. H atoms are represented as small spheres of arbitrary radii and H bonds are shown as dashed line. H atoms not involved in hydrogen bonding have been omitted for clarity.[Symmetry codes: (i) -x+1, y+1/2, -z-1/2]
2-ethoxy-4-{[(2-nitrophenyl)hydrazono]methyl}phenol top
Crystal data top
C15H15N3O4F(000) = 632
Mr = 301.30Dx = 1.412 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1993 reflections
a = 14.586 (3) Åθ = 3.1–28.2°
b = 5.002 (1) ŵ = 0.11 mm1
c = 19.894 (4) ÅT = 296 K
β = 102.40 (3)°Block, red
V = 1417.6 (5) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2762 independent reflections
Radiation source: fine-focus sealed tube1264 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1716
Tmin = 0.979, Tmax = 0.982k = 65
5585 measured reflectionsl = 1724
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 0.72 w = 1/[σ2(Fo2) + (0.0305P)2]
where P = (Fo2 + 2Fc2)/3
2762 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H15N3O4V = 1417.6 (5) Å3
Mr = 301.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.586 (3) ŵ = 0.11 mm1
b = 5.002 (1) ÅT = 296 K
c = 19.894 (4) Å0.20 × 0.18 × 0.17 mm
β = 102.40 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2762 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1264 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.982Rint = 0.040
5585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 0.72Δρmax = 0.13 e Å3
2762 reflectionsΔρmin = 0.20 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06946 (14)0.4950 (3)0.12464 (9)0.0311 (5)
C20.07330 (15)0.6553 (4)0.18267 (10)0.0385 (5)
H2A0.03010.62900.21030.046*
C30.13985 (16)0.8501 (4)0.19918 (10)0.0435 (6)
H30.14280.95620.23800.052*
C40.20308 (15)0.8864 (4)0.15677 (10)0.0431 (6)
H40.24831.01970.16740.052*
C50.20040 (15)0.7316 (4)0.10010 (10)0.0404 (6)
H50.24390.76200.07290.049*
C60.13368 (14)0.5272 (3)0.08161 (10)0.0309 (5)
C70.19806 (14)0.2628 (4)0.06428 (9)0.0350 (5)
H70.15100.13410.07370.042*
C80.26434 (14)0.2814 (3)0.10903 (9)0.0320 (5)
C90.33800 (14)0.4669 (3)0.09704 (9)0.0320 (5)
H90.34550.58220.05960.038*
C100.39910 (14)0.4781 (3)0.14074 (10)0.0315 (5)
C110.38746 (14)0.3060 (4)0.19732 (9)0.0310 (5)
C120.31578 (15)0.1243 (4)0.20896 (10)0.0369 (5)
H120.30820.01020.24670.044*
C130.25466 (15)0.1098 (4)0.16481 (10)0.0375 (5)
H130.20660.01610.17260.045*
C140.49775 (15)0.8147 (4)0.07617 (10)0.0397 (5)
H14A0.50670.71070.03410.048*
H14B0.44760.94220.07640.048*
C150.58674 (16)0.9580 (4)0.08049 (11)0.0557 (7)
H15A0.63580.82980.08020.084*
H15B0.60441.07570.04170.084*
H15C0.57691.06020.12230.084*
N10.00228 (12)0.2929 (3)0.11143 (9)0.0380 (4)
N20.13414 (11)0.3742 (3)0.02520 (8)0.0365 (4)
H20.09240.25190.01310.044*
N30.20184 (11)0.4161 (3)0.01266 (8)0.0345 (4)
O10.00973 (10)0.1463 (3)0.06016 (7)0.0466 (4)
O20.05468 (11)0.2664 (3)0.15192 (7)0.0572 (5)
O30.47481 (10)0.6437 (2)0.13471 (7)0.0433 (4)
O40.44797 (11)0.3159 (2)0.24127 (7)0.0462 (4)
H110.47890.45400.23460.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0301 (13)0.0326 (11)0.0327 (12)0.0013 (10)0.0117 (10)0.0023 (9)
C20.0433 (15)0.0418 (12)0.0346 (12)0.0052 (12)0.0179 (11)0.0040 (10)
C30.0542 (16)0.0416 (13)0.0356 (13)0.0044 (12)0.0119 (12)0.0022 (10)
C40.0453 (16)0.0383 (12)0.0458 (14)0.0061 (11)0.0099 (12)0.0029 (11)
C50.0400 (15)0.0406 (12)0.0456 (14)0.0100 (11)0.0201 (12)0.0002 (10)
C60.0321 (13)0.0320 (11)0.0296 (12)0.0000 (10)0.0090 (10)0.0023 (9)
C70.0316 (13)0.0389 (11)0.0371 (12)0.0088 (10)0.0131 (11)0.0003 (10)
C80.0311 (13)0.0342 (11)0.0343 (12)0.0021 (10)0.0151 (10)0.0006 (10)
C90.0372 (14)0.0326 (11)0.0306 (12)0.0039 (10)0.0173 (11)0.0038 (9)
C100.0332 (13)0.0286 (11)0.0363 (12)0.0039 (10)0.0156 (10)0.0011 (9)
C110.0349 (13)0.0348 (12)0.0276 (11)0.0034 (10)0.0163 (10)0.0018 (9)
C120.0450 (14)0.0373 (12)0.0305 (12)0.0057 (11)0.0128 (11)0.0082 (9)
C130.0382 (14)0.0388 (12)0.0378 (13)0.0110 (10)0.0132 (11)0.0044 (10)
C140.0448 (14)0.0419 (11)0.0345 (12)0.0099 (11)0.0134 (11)0.0002 (10)
C150.0494 (16)0.0683 (15)0.0527 (15)0.0233 (13)0.0186 (13)0.0084 (12)
N10.0358 (12)0.0444 (10)0.0388 (10)0.0033 (9)0.0187 (9)0.0033 (9)
N20.0353 (11)0.0403 (9)0.0398 (11)0.0130 (8)0.0213 (9)0.0045 (8)
N30.0310 (11)0.0416 (10)0.0355 (10)0.0039 (8)0.0173 (9)0.0014 (8)
O10.0463 (10)0.0544 (9)0.0444 (10)0.0174 (8)0.0215 (8)0.0101 (7)
O20.0517 (11)0.0749 (10)0.0563 (10)0.0173 (9)0.0363 (9)0.0046 (8)
O30.0441 (9)0.0484 (8)0.0459 (9)0.0189 (8)0.0284 (8)0.0145 (7)
O40.0547 (11)0.0470 (9)0.0472 (9)0.0078 (8)0.0339 (8)0.0069 (7)
Geometric parameters (Å, º) top
C1—C21.397 (2)C10—O31.365 (2)
C1—C61.407 (3)C10—C111.398 (2)
C1—N11.438 (2)C11—C121.367 (2)
C2—C31.365 (3)C11—O41.370 (2)
C2—H2A0.9300C12—C131.381 (3)
C3—C41.389 (3)C12—H120.9300
C3—H30.9300C13—H130.9300
C4—C51.361 (2)C14—O31.426 (2)
C4—H40.9300C14—C151.501 (3)
C5—C61.405 (2)C14—H14A0.9700
C5—H50.9300C14—H14B0.9700
C6—N21.359 (2)C15—H15A0.9600
C7—N31.273 (2)C15—H15B0.9600
C7—C81.451 (3)C15—H15C0.9600
C7—H70.9300N1—O21.2308 (19)
C8—C131.386 (2)N1—O11.2417 (18)
C8—C91.401 (2)N2—N31.380 (2)
C9—C101.373 (3)N2—H20.8600
C9—H90.9300O4—H110.8200
C2—C1—C6121.55 (18)C12—C11—O4119.34 (17)
C2—C1—N1116.94 (18)C12—C11—C10120.12 (17)
C6—C1—N1121.50 (17)O4—C11—C10120.54 (18)
C3—C2—C1120.59 (19)C11—C12—C13120.11 (18)
C3—C2—H2A119.7C11—C12—H12119.9
C1—C2—H2A119.7C13—C12—H12119.9
C2—C3—C4118.55 (19)C12—C13—C8120.53 (19)
C2—C3—H3120.7C12—C13—H13119.7
C4—C3—H3120.7C8—C13—H13119.7
C5—C4—C3121.6 (2)O3—C14—C15107.09 (16)
C5—C4—H4119.2O3—C14—H14A110.3
C3—C4—H4119.2C15—C14—H14A110.3
C4—C5—C6121.73 (19)O3—C14—H14B110.3
C4—C5—H5119.1C15—C14—H14B110.3
C6—C5—H5119.1H14A—C14—H14B108.6
N2—C6—C5119.98 (17)C14—C15—H15A109.5
N2—C6—C1124.03 (18)C14—C15—H15B109.5
C5—C6—C1115.98 (17)H15A—C15—H15B109.5
N3—C7—C8122.48 (18)C14—C15—H15C109.5
N3—C7—H7118.8H15A—C15—H15C109.5
C8—C7—H7118.8H15B—C15—H15C109.5
C13—C8—C9119.29 (18)O2—N1—O1121.13 (17)
C13—C8—C7118.99 (18)O2—N1—C1119.06 (16)
C9—C8—C7121.72 (17)O1—N1—C1119.80 (16)
C10—C9—C8119.83 (17)C6—N2—N3119.74 (16)
C10—C9—H9120.1C6—N2—H2120.1
C8—C9—H9120.1N3—N2—H2120.1
O3—C10—C9126.29 (18)C7—N3—N2115.88 (16)
O3—C10—C11113.60 (16)C10—O3—C14118.65 (14)
C9—C10—C11120.11 (19)C11—O4—H11109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.992.610 (2)128
O4—H11···O4i0.822.212.9842 (16)159
Symmetry code: (i) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H15N3O4
Mr301.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.586 (3), 5.002 (1), 19.894 (4)
β (°) 102.40 (3)
V3)1417.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.979, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
5585, 2762, 1264
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.071, 0.72
No. of reflections2762
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.20

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.992.610 (2)127.8
O4—H11···O4i0.822.212.9842 (16)158.5
Symmetry code: (i) x+1, y+1/2, z1/2.
 

Acknowledgements

The authors would like to express their deep appreciation to the startup fund for PhDs of the Natural Scientific Research of Zhengzhou University of Light Industry (No. 2005001) and the Fund for Natural Scientific Research of Zhengzhou University of Light Industry (000455).

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds