organic compounds
1-(But-2-enylidene)-2-(2-nitrophenyl)hydrazine
aKey Laboratory of Surface and Interface Science of Henan, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: yinck@263.net
The molecule of the title Schiff base compound, C10H11N3O2, adopts an E geometry with respect to the C=N double bond. The molecule is roughly planar, with the largest deviation from the mean plane being 0.111 (2) Å, The enylidene-hydrazine group is, however, slightly twisted with respect to the phenyl ring, making a dihedral angle of 6.5 (3)°. An intramolecular N—H⋯O hydrogen bond may be responsible for the planar conformation. An intermolecular N—H⋯O hydrogen bond links two molecules around an inversion center, building a pseudo dimer.
Related literature
For the role played by Schiff base compounds in the development of various proteins and enzymes, see: Kahwa et al. (1986); Santos et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809037179/dn2487sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809037179/dn2487Isup2.hkl
2-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml), The mixture was stirred for several minitutes at 351 K, but-2-enal (1 mmol, 0.070 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol, red single crystals of (I) was obtained after 3 d.
H atoms were placed in calculated position and treated as riding with C—H = 0.93 Å(aromatic), 0.96 Å(methyl) and N—H = 0.86Å with Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq(methyl).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C10H11N3O2 | Z = 2 |
Mr = 205.22 | F(000) = 216 |
Triclinic, P1 | Dx = 1.299 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.2390 (6) Å | Cell parameters from 1958 reflections |
b = 11.456 (2) Å | θ = 3.2–26.0° |
c = 11.9840 (17) Å | µ = 0.09 mm−1 |
α = 113.271 (15)° | T = 296 K |
β = 96.534 (12)° | Block, red |
γ = 95.595 (13)° | 0.25 × 0.19 × 0.18 mm |
V = 524.64 (16) Å3 |
Bruker SMART CCD area-detector diffractometer | 1758 independent reflections |
Radiation source: fine-focus sealed tube | 587 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
ω scans | θmax = 25.0°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −5→4 |
Tmin = 0.979, Tmax = 0.982 | k = −13→12 |
3321 measured reflections | l = 0→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 0.68 | w = 1/[σ2(Fo2) + (0.0315P)2] where P = (Fo2 + 2Fc2)/3 |
1758 reflections | (Δ/σ)max < 0.001 |
137 parameters | Δρmax = 0.12 e Å−3 |
0 restraints | Δρmin = −0.11 e Å−3 |
C10H11N3O2 | γ = 95.595 (13)° |
Mr = 205.22 | V = 524.64 (16) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.2390 (6) Å | Mo Kα radiation |
b = 11.456 (2) Å | µ = 0.09 mm−1 |
c = 11.9840 (17) Å | T = 296 K |
α = 113.271 (15)° | 0.25 × 0.19 × 0.18 mm |
β = 96.534 (12)° |
Bruker SMART CCD area-detector diffractometer | 1758 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 587 reflections with I > 2σ(I) |
Tmin = 0.979, Tmax = 0.982 | Rint = 0.039 |
3321 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 0.68 | Δρmax = 0.12 e Å−3 |
1758 reflections | Δρmin = −0.11 e Å−3 |
137 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.2639 (7) | 0.1906 (3) | −0.4898 (3) | 0.0923 (12) | |
H1A | 1.1868 | 0.2699 | −0.4786 | 0.138* | |
H1B | 1.1535 | 0.1237 | −0.5661 | 0.138* | |
H1C | 1.4905 | 0.2007 | −0.4916 | 0.138* | |
C2 | 1.2028 (7) | 0.1556 (3) | −0.3856 (3) | 0.0637 (10) | |
H2 | 1.2765 | 0.0820 | −0.3851 | 0.076* | |
C3 | 1.0549 (7) | 0.2191 (3) | −0.2947 (3) | 0.0601 (10) | |
H3 | 0.9757 | 0.2916 | −0.2958 | 0.072* | |
C4 | 1.0060 (7) | 0.1857 (3) | −0.1944 (3) | 0.0549 (9) | |
H4 | 1.0791 | 0.1129 | −0.1913 | 0.066* | |
C5 | 0.6836 (7) | 0.2802 (3) | 0.0774 (2) | 0.0451 (9) | |
C6 | 0.6046 (6) | 0.4007 (3) | 0.0883 (3) | 0.0584 (9) | |
H6 | 0.6489 | 0.4308 | 0.0293 | 0.070* | |
C7 | 0.4654 (7) | 0.4732 (3) | 0.1834 (3) | 0.0681 (10) | |
H7 | 0.4153 | 0.5520 | 0.1879 | 0.082* | |
C8 | 0.3955 (8) | 0.4328 (4) | 0.2745 (3) | 0.0767 (11) | |
H8 | 0.3012 | 0.4840 | 0.3394 | 0.092* | |
C9 | 0.4679 (7) | 0.3169 (3) | 0.2666 (3) | 0.0641 (10) | |
H9 | 0.4228 | 0.2883 | 0.3265 | 0.077* | |
C10 | 0.6101 (7) | 0.2408 (3) | 0.1686 (2) | 0.0497 (9) | |
N1 | 0.8634 (6) | 0.2541 (2) | −0.1088 (2) | 0.0553 (7) | |
N2 | 0.8205 (5) | 0.2108 (2) | −0.01925 (19) | 0.0548 (8) | |
H2A | 0.8807 | 0.1395 | −0.0246 | 0.066* | |
N3 | 0.6751 (6) | 0.1190 (3) | 0.1671 (2) | 0.0634 (8) | |
O1 | 0.5896 (6) | 0.0865 (2) | 0.2464 (2) | 0.0933 (9) | |
O2 | 0.8241 (5) | 0.05249 (18) | 0.08917 (18) | 0.0722 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.096 (3) | 0.119 (3) | 0.074 (2) | 0.006 (2) | 0.027 (2) | 0.051 (2) |
C2 | 0.075 (3) | 0.063 (2) | 0.062 (2) | 0.006 (2) | 0.0186 (19) | 0.0343 (19) |
C3 | 0.069 (3) | 0.065 (3) | 0.057 (2) | 0.014 (2) | 0.011 (2) | 0.0350 (19) |
C4 | 0.063 (2) | 0.052 (2) | 0.057 (2) | 0.0116 (19) | 0.0080 (18) | 0.0305 (19) |
C5 | 0.048 (2) | 0.041 (2) | 0.049 (2) | 0.0052 (18) | 0.0036 (17) | 0.0236 (18) |
C6 | 0.064 (2) | 0.053 (2) | 0.072 (2) | 0.014 (2) | 0.0155 (17) | 0.0372 (19) |
C7 | 0.084 (3) | 0.048 (3) | 0.082 (2) | 0.017 (2) | 0.022 (2) | 0.032 (2) |
C8 | 0.080 (3) | 0.071 (3) | 0.082 (3) | 0.025 (2) | 0.028 (2) | 0.026 (2) |
C9 | 0.079 (3) | 0.063 (3) | 0.059 (2) | 0.016 (2) | 0.0244 (18) | 0.030 (2) |
C10 | 0.057 (2) | 0.045 (2) | 0.056 (2) | 0.0113 (19) | 0.0112 (17) | 0.0282 (18) |
N1 | 0.068 (2) | 0.056 (2) | 0.0565 (16) | 0.0143 (15) | 0.0179 (15) | 0.0347 (16) |
N2 | 0.076 (2) | 0.052 (2) | 0.0548 (16) | 0.0199 (16) | 0.0241 (15) | 0.0353 (15) |
N3 | 0.073 (2) | 0.073 (2) | 0.0618 (18) | 0.0175 (18) | 0.0187 (15) | 0.0431 (18) |
O1 | 0.149 (2) | 0.084 (2) | 0.0911 (17) | 0.0467 (17) | 0.0603 (16) | 0.0652 (16) |
O2 | 0.1081 (19) | 0.0611 (18) | 0.0802 (14) | 0.0410 (15) | 0.0499 (13) | 0.0479 (13) |
C1—C2 | 1.495 (4) | C6—C7 | 1.356 (3) |
C1—H1A | 0.9600 | C6—H6 | 0.9300 |
C1—H1B | 0.9600 | C7—C8 | 1.392 (4) |
C1—H1C | 0.9600 | C7—H7 | 0.9300 |
C2—C3 | 1.314 (3) | C8—C9 | 1.361 (3) |
C2—H2 | 0.9300 | C8—H8 | 0.9300 |
C3—C4 | 1.429 (3) | C9—C10 | 1.399 (3) |
C3—H3 | 0.9300 | C9—H9 | 0.9300 |
C4—N1 | 1.276 (3) | C10—N3 | 1.442 (3) |
C4—H4 | 0.9300 | N1—N2 | 1.371 (3) |
C5—N2 | 1.351 (3) | N2—H2A | 0.8600 |
C5—C10 | 1.392 (3) | N3—O1 | 1.227 (3) |
C5—C6 | 1.411 (3) | N3—O2 | 1.232 (3) |
C2—C1—H1A | 109.5 | C5—C6—H6 | 119.4 |
C2—C1—H1B | 109.5 | C6—C7—C8 | 121.7 (3) |
H1A—C1—H1B | 109.5 | C6—C7—H7 | 119.1 |
C2—C1—H1C | 109.5 | C8—C7—H7 | 119.1 |
H1A—C1—H1C | 109.5 | C9—C8—C7 | 118.7 (3) |
H1B—C1—H1C | 109.5 | C9—C8—H8 | 120.7 |
C3—C2—C1 | 126.1 (3) | C7—C8—H8 | 120.7 |
C3—C2—H2 | 116.9 | C8—C9—C10 | 120.1 (3) |
C1—C2—H2 | 116.9 | C8—C9—H9 | 119.9 |
C2—C3—C4 | 125.2 (3) | C10—C9—H9 | 119.9 |
C2—C3—H3 | 117.4 | C5—C10—C9 | 121.9 (3) |
C4—C3—H3 | 117.4 | C5—C10—N3 | 121.8 (3) |
N1—C4—C3 | 121.1 (3) | C9—C10—N3 | 116.3 (3) |
N1—C4—H4 | 119.5 | C4—N1—N2 | 116.1 (2) |
C3—C4—H4 | 119.5 | C5—N2—N1 | 119.9 (2) |
N2—C5—C10 | 124.5 (3) | C5—N2—H2A | 120.0 |
N2—C5—C6 | 119.1 (3) | N1—N2—H2A | 120.0 |
C10—C5—C6 | 116.4 (3) | O1—N3—O2 | 121.7 (3) |
C7—C6—C5 | 121.1 (3) | O1—N3—C10 | 118.9 (3) |
C7—C6—H6 | 119.4 | O2—N3—C10 | 119.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2 | 0.86 | 2.00 | 2.615 (3) | 127 |
N2—H2A···O2i | 0.86 | 2.53 | 3.353 (3) | 160 |
Symmetry code: (i) −x+2, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C10H11N3O2 |
Mr | 205.22 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 4.2390 (6), 11.456 (2), 11.9840 (17) |
α, β, γ (°) | 113.271 (15), 96.534 (12), 95.595 (13) |
V (Å3) | 524.64 (16) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.25 × 0.19 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.979, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3321, 1758, 587 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.080, 0.68 |
No. of reflections | 1758 |
No. of parameters | 137 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.12, −0.11 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2 | 0.86 | 2.00 | 2.615 (3) | 127.4 |
N2—H2A···O2i | 0.86 | 2.53 | 3.353 (3) | 159.9 |
Symmetry code: (i) −x+2, −y, −z. |
Acknowledgements
The authors would like to express their deep appreciation to the PhD startup fund of the Fund for Natural Scientific Research of Zhengzhou University of Light Industry (grant No. 2005001) and the Fund for Natural Scientific Research of Zhengzhou University of Light Industry (grant No. 000455).
References
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185. CrossRef CAS Web of Science Google Scholar
Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our in the study of the coordination chemistry of Schiff bases, we synthesized the title compound and determined its crystal structure.
The molecule is roughly planar with the largest deviation from the mean plane being -0.111 (2) Å at O1 (Fig. 1). The enylidene-hydrazine group is however slightly twisted with respect to the phenyl ring making a dihedral angle of 6.5 (3)° .
Intramolecular N—H···O bond may be responsible for the planar conformation whereas intermolecular N—H···O links two molecules around the inversion center buiding a pseudo dimer (Table 1, Fig. 2).