organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(But-2-enyl­­idene)-2-(2-nitro­phen­yl)hydrazine

aKey Laboratory of Surface and Interface Science of Henan, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: yinck@263.net

(Received 11 September 2009; accepted 14 September 2009; online 19 September 2009)

The mol­ecule of the title Schiff base compound, C10H11N3O2, adopts an E geometry with respect to the C=N double bond. The mol­ecule is roughly planar, with the largest deviation from the mean plane being 0.111 (2) Å, The enyl­idene-hydrazine group is, however, slightly twisted with respect to the phenyl ring, making a dihedral angle of 6.5 (3)°. An intra­molecular N—H⋯O hydrogen bond may be responsible for the planar conformation. An inter­molecular N—H⋯O hydrogen bond links two mol­ecules around an inversion center, building a pseudo dimer.

Related literature

For the role played by Schiff base compounds in the development of various proteins and enzymes, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N3O2

  • Mr = 205.22

  • Triclinic, [P \overline 1]

  • a = 4.2390 (6) Å

  • b = 11.456 (2) Å

  • c = 11.9840 (17) Å

  • α = 113.271 (15)°

  • β = 96.534 (12)°

  • γ = 95.595 (13)°

  • V = 524.64 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.25 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.982

  • 3321 measured reflections

  • 1758 independent reflections

  • 587 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.080

  • S = 0.68

  • 1758 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2 0.86 2.00 2.615 (3) 127
N2—H2A⋯O2i 0.86 2.53 3.353 (3) 160
Symmetry code: (i) -x+2, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our in the study of the coordination chemistry of Schiff bases, we synthesized the title compound and determined its crystal structure.

The molecule is roughly planar with the largest deviation from the mean plane being -0.111 (2) Å at O1 (Fig. 1). The enylidene-hydrazine group is however slightly twisted with respect to the phenyl ring making a dihedral angle of 6.5 (3)° .

Intramolecular N—H···O bond may be responsible for the planar conformation whereas intermolecular N—H···O links two molecules around the inversion center buiding a pseudo dimer (Table 1, Fig. 2).

Related literature top

For the role played by Schiff base compounds in the development of various proteins and enzymes, see: Kahwa et al. (1986); Santos et al. (2001).

Experimental top

2-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml), The mixture was stirred for several minitutes at 351 K, but-2-enal (1 mmol, 0.070 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol, red single crystals of (I) was obtained after 3 d.

Refinement top

H atoms were placed in calculated position and treated as riding with C—H = 0.93 Å(aromatic), 0.96 Å(methyl) and N—H = 0.86Å with Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atomlabeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing of (I), showing the intra and intermolecular hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry codes: (i) -x+2, -y, -z]
1-(But-2-enylidene)-2-(2-nitrophenyl)hydrazine top
Crystal data top
C10H11N3O2Z = 2
Mr = 205.22F(000) = 216
Triclinic, P1Dx = 1.299 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.2390 (6) ÅCell parameters from 1958 reflections
b = 11.456 (2) Åθ = 3.2–26.0°
c = 11.9840 (17) ŵ = 0.09 mm1
α = 113.271 (15)°T = 296 K
β = 96.534 (12)°Block, red
γ = 95.595 (13)°0.25 × 0.19 × 0.18 mm
V = 524.64 (16) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1758 independent reflections
Radiation source: fine-focus sealed tube587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 54
Tmin = 0.979, Tmax = 0.982k = 1312
3321 measured reflectionsl = 014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 0.68 w = 1/[σ2(Fo2) + (0.0315P)2]
where P = (Fo2 + 2Fc2)/3
1758 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.11 e Å3
Crystal data top
C10H11N3O2γ = 95.595 (13)°
Mr = 205.22V = 524.64 (16) Å3
Triclinic, P1Z = 2
a = 4.2390 (6) ÅMo Kα radiation
b = 11.456 (2) ŵ = 0.09 mm1
c = 11.9840 (17) ÅT = 296 K
α = 113.271 (15)°0.25 × 0.19 × 0.18 mm
β = 96.534 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1758 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
587 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.982Rint = 0.039
3321 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 0.68Δρmax = 0.12 e Å3
1758 reflectionsΔρmin = 0.11 e Å3
137 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2639 (7)0.1906 (3)0.4898 (3)0.0923 (12)
H1A1.18680.26990.47860.138*
H1B1.15350.12370.56610.138*
H1C1.49050.20070.49160.138*
C21.2028 (7)0.1556 (3)0.3856 (3)0.0637 (10)
H21.27650.08200.38510.076*
C31.0549 (7)0.2191 (3)0.2947 (3)0.0601 (10)
H30.97570.29160.29580.072*
C41.0060 (7)0.1857 (3)0.1944 (3)0.0549 (9)
H41.07910.11290.19130.066*
C50.6836 (7)0.2802 (3)0.0774 (2)0.0451 (9)
C60.6046 (6)0.4007 (3)0.0883 (3)0.0584 (9)
H60.64890.43080.02930.070*
C70.4654 (7)0.4732 (3)0.1834 (3)0.0681 (10)
H70.41530.55200.18790.082*
C80.3955 (8)0.4328 (4)0.2745 (3)0.0767 (11)
H80.30120.48400.33940.092*
C90.4679 (7)0.3169 (3)0.2666 (3)0.0641 (10)
H90.42280.28830.32650.077*
C100.6101 (7)0.2408 (3)0.1686 (2)0.0497 (9)
N10.8634 (6)0.2541 (2)0.1088 (2)0.0553 (7)
N20.8205 (5)0.2108 (2)0.01925 (19)0.0548 (8)
H2A0.88070.13950.02460.066*
N30.6751 (6)0.1190 (3)0.1671 (2)0.0634 (8)
O10.5896 (6)0.0865 (2)0.2464 (2)0.0933 (9)
O20.8241 (5)0.05249 (18)0.08917 (18)0.0722 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.096 (3)0.119 (3)0.074 (2)0.006 (2)0.027 (2)0.051 (2)
C20.075 (3)0.063 (2)0.062 (2)0.006 (2)0.0186 (19)0.0343 (19)
C30.069 (3)0.065 (3)0.057 (2)0.014 (2)0.011 (2)0.0350 (19)
C40.063 (2)0.052 (2)0.057 (2)0.0116 (19)0.0080 (18)0.0305 (19)
C50.048 (2)0.041 (2)0.049 (2)0.0052 (18)0.0036 (17)0.0236 (18)
C60.064 (2)0.053 (2)0.072 (2)0.014 (2)0.0155 (17)0.0372 (19)
C70.084 (3)0.048 (3)0.082 (2)0.017 (2)0.022 (2)0.032 (2)
C80.080 (3)0.071 (3)0.082 (3)0.025 (2)0.028 (2)0.026 (2)
C90.079 (3)0.063 (3)0.059 (2)0.016 (2)0.0244 (18)0.030 (2)
C100.057 (2)0.045 (2)0.056 (2)0.0113 (19)0.0112 (17)0.0282 (18)
N10.068 (2)0.056 (2)0.0565 (16)0.0143 (15)0.0179 (15)0.0347 (16)
N20.076 (2)0.052 (2)0.0548 (16)0.0199 (16)0.0241 (15)0.0353 (15)
N30.073 (2)0.073 (2)0.0618 (18)0.0175 (18)0.0187 (15)0.0431 (18)
O10.149 (2)0.084 (2)0.0911 (17)0.0467 (17)0.0603 (16)0.0652 (16)
O20.1081 (19)0.0611 (18)0.0802 (14)0.0410 (15)0.0499 (13)0.0479 (13)
Geometric parameters (Å, º) top
C1—C21.495 (4)C6—C71.356 (3)
C1—H1A0.9600C6—H60.9300
C1—H1B0.9600C7—C81.392 (4)
C1—H1C0.9600C7—H70.9300
C2—C31.314 (3)C8—C91.361 (3)
C2—H20.9300C8—H80.9300
C3—C41.429 (3)C9—C101.399 (3)
C3—H30.9300C9—H90.9300
C4—N11.276 (3)C10—N31.442 (3)
C4—H40.9300N1—N21.371 (3)
C5—N21.351 (3)N2—H2A0.8600
C5—C101.392 (3)N3—O11.227 (3)
C5—C61.411 (3)N3—O21.232 (3)
C2—C1—H1A109.5C5—C6—H6119.4
C2—C1—H1B109.5C6—C7—C8121.7 (3)
H1A—C1—H1B109.5C6—C7—H7119.1
C2—C1—H1C109.5C8—C7—H7119.1
H1A—C1—H1C109.5C9—C8—C7118.7 (3)
H1B—C1—H1C109.5C9—C8—H8120.7
C3—C2—C1126.1 (3)C7—C8—H8120.7
C3—C2—H2116.9C8—C9—C10120.1 (3)
C1—C2—H2116.9C8—C9—H9119.9
C2—C3—C4125.2 (3)C10—C9—H9119.9
C2—C3—H3117.4C5—C10—C9121.9 (3)
C4—C3—H3117.4C5—C10—N3121.8 (3)
N1—C4—C3121.1 (3)C9—C10—N3116.3 (3)
N1—C4—H4119.5C4—N1—N2116.1 (2)
C3—C4—H4119.5C5—N2—N1119.9 (2)
N2—C5—C10124.5 (3)C5—N2—H2A120.0
N2—C5—C6119.1 (3)N1—N2—H2A120.0
C10—C5—C6116.4 (3)O1—N3—O2121.7 (3)
C7—C6—C5121.1 (3)O1—N3—C10118.9 (3)
C7—C6—H6119.4O2—N3—C10119.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.862.002.615 (3)127
N2—H2A···O2i0.862.533.353 (3)160
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC10H11N3O2
Mr205.22
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)4.2390 (6), 11.456 (2), 11.9840 (17)
α, β, γ (°)113.271 (15), 96.534 (12), 95.595 (13)
V3)524.64 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.19 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.979, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
3321, 1758, 587
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.080, 0.68
No. of reflections1758
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.11

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.862.002.615 (3)127.4
N2—H2A···O2i0.862.533.353 (3)159.9
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

The authors would like to express their deep appreciation to the PhD startup fund of the Fund for Natural Scientific Research of Zhengzhou University of Light Industry (grant No. 2005001) and the Fund for Natural Scientific Research of Zhengzhou University of Light Industry (grant No. 000455).

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds