organic compounds
tert-Butyl N-[N,N-bis(2-chloroethyl)sulfamoyl]-N-(2-chloroethyl)carbamate
aDépartement des Sciences Fondamentales, Faculté des Sciences, Université du 20 Août 1955 – Skikda, Route d′El-Hadaïk, BP 26, 21000 Skikda, Algeria, bInstitut des Biomolécules Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8, Rue de l'Ecole Normale, 34296 Montpellier Cedex, France, cSciences Chimiques de Rennes (UMR CNRS 6226), Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France, and dLaboratoire de Chimie Appliquée, Université du 8 Mai 1945 – Guelma, BP 401, 24000 Guelma, Algeria
*Correspondence e-mail: seridi_a@yahoo.fr
The title compound, C11H21Cl3N2O4S, was produced as part of a development programme of a new synthetic route to chloroethylnitrososulfamides (CENS) with three chloroethyl moieties. These compounds possess structural features that confer potential biological activity and act as alkylating agents. The packing is governed by four weak C—H⋯O interactions, forming an infinite three-dimensional network.
Related literature
For the potential biological activity, pharmaceutical utility and cytotoxic activity of chloroethylnitrososulfamides, see: Abdaoui et al. (1996, 2000); Dokhane et al. (2002); Galešić et al. (1987); Gnewuch & Sosnovsky (1997); Ishiguro et al. (2006); Jonnalagadda et al. (2007); Passagne et al. (2003); Seridi et al. (2006); Skinner & Scharts (1972); Voutsinas et al. (1993); Winum et al. (2003). For the synthetic procedure, see: Mitsunobu (1981).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809038185/dn2489sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809038185/dn2489Isup2.hkl
The synthetic pathway used for the preparation of the title compound is outlined in Fig. 2. First the formation of tert-butylN-(2-chloroethyl)sulfamoylcarbamate which is performed in dried dichloromethane with successive addition of tBuOH, and Chloroethylamine/TEA into CSI. After purification, the carbamate was recovered at (yield 80%). The second step is carried out according to the Mitsunobu procedure (Mitsunobu, 1981) in anhydrous THF as a solvent. The mixture of DEAD (diethyl azodicarboxylate) and tert-butylN-(2-chloroethyl)sulfamoylcarbamate is added to a solution of excess of chloroethanol and PPh3. The product was recrystallized in pure ethanol.
H atoms bonded to C atoms were positioned geometrically and refined isotropically using a riding model (including
about the ethanol C—C bond), with C—H = 0.97 Å (methylene) or 0.96Å (methyl) and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).Data collection: SMART (Bruker, 2006) APEX2?; cell
SMART (Bruker, 2006) APEX2?; data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C11H21Cl3N2O4S | F(000) = 800 |
Mr = 383.71 | Dx = 1.453 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9788 reflections |
a = 9.6132 (5) Å | θ = 2.4–27.4° |
b = 17.1282 (9) Å | µ = 0.66 mm−1 |
c = 10.6763 (5) Å | T = 100 K |
β = 93.868 (3)° | Prism, colourless |
V = 1753.92 (15) Å3 | 0.15 × 0.12 × 0.1 mm |
Z = 4 |
Bruker APEXII diffractometer | 3982 independent reflections |
Radiation source: APEXII, Bruker-AXS | 3662 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
CCD rotation images, thick slices scans | θmax = 27.4°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −12→11 |
Tmin = 0.862, Tmax = 0.937 | k = −22→21 |
17775 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0272P)2 + 0.8873P] where P = (Fo2 + 2Fc2)/3 |
3982 reflections | (Δ/σ)max = 0.001 |
193 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C11H21Cl3N2O4S | V = 1753.92 (15) Å3 |
Mr = 383.71 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.6132 (5) Å | µ = 0.66 mm−1 |
b = 17.1282 (9) Å | T = 100 K |
c = 10.6763 (5) Å | 0.15 × 0.12 × 0.1 mm |
β = 93.868 (3)° |
Bruker APEXII diffractometer | 3982 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 3662 reflections with I > 2σ(I) |
Tmin = 0.862, Tmax = 0.937 | Rint = 0.037 |
17775 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.37 e Å−3 |
3982 reflections | Δρmin = −0.39 e Å−3 |
193 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.30088 (13) | −0.00247 (8) | 0.74767 (12) | 0.0142 (3) | |
H1A | 0.3977 | −0.0155 | 0.7375 | 0.017* | |
H1B | 0.2483 | −0.0120 | 0.6684 | 0.017* | |
C2 | 0.24504 (14) | −0.05402 (8) | 0.84875 (13) | 0.0166 (3) | |
H2A | 0.1511 | −0.0381 | 0.8649 | 0.020* | |
H2B | 0.3033 | −0.0489 | 0.9261 | 0.020* | |
C3 | 0.16945 (13) | 0.12486 (8) | 0.74993 (12) | 0.0141 (3) | |
C4 | −0.07329 (14) | 0.11154 (9) | 0.66503 (14) | 0.0212 (3) | |
C5 | −0.15279 (16) | 0.03860 (10) | 0.62057 (17) | 0.0332 (4) | |
H5A | −0.1090 | 0.0162 | 0.5508 | 0.050* | |
H5B | −0.2473 | 0.0523 | 0.5950 | 0.050* | |
H5C | −0.1521 | 0.0014 | 0.6878 | 0.050* | |
C6 | −0.05995 (16) | 0.16890 (10) | 0.55745 (15) | 0.0281 (3) | |
H6A | −0.0128 | 0.2151 | 0.5885 | 0.042* | |
H6B | −0.1511 | 0.1825 | 0.5220 | 0.042* | |
H6C | −0.0075 | 0.1452 | 0.4941 | 0.042* | |
C7 | −0.13690 (15) | 0.14725 (10) | 0.77813 (15) | 0.0285 (3) | |
H7A | −0.1375 | 0.1092 | 0.8442 | 0.043* | |
H7B | −0.2307 | 0.1635 | 0.7550 | 0.043* | |
H7C | −0.0827 | 0.1916 | 0.8068 | 0.043* | |
C8 | 0.38802 (13) | 0.13068 (8) | 1.08849 (12) | 0.0150 (3) | |
H8A | 0.4597 | 0.1523 | 1.1468 | 0.018* | |
H8B | 0.4115 | 0.0765 | 1.0741 | 0.018* | |
C9 | 0.24946 (14) | 0.13378 (8) | 1.14857 (13) | 0.0184 (3) | |
H91 | 0.2239 | 0.1879 | 1.1609 | 0.022* | |
H92 | 0.2594 | 0.1090 | 1.2304 | 0.022* | |
C10 | 0.36795 (13) | 0.25857 (8) | 0.96777 (12) | 0.0139 (3) | |
H10A | 0.3144 | 0.2731 | 1.0379 | 0.017* | |
H10B | 0.3146 | 0.2733 | 0.8910 | 0.017* | |
C11 | 0.50586 (14) | 0.30294 (8) | 0.97652 (12) | 0.0158 (3) | |
H11A | 0.5593 | 0.2904 | 0.9053 | 0.019* | |
H11B | 0.5605 | 0.2888 | 1.0528 | 0.019* | |
Cl1 | 0.24477 (4) | −0.15386 (2) | 0.79617 (4) | 0.02567 (9) | |
Cl2 | 0.11302 (3) | 0.08604 (2) | 1.05440 (3) | 0.02616 (10) | |
Cl3 | 0.46514 (4) | 0.40555 (2) | 0.97723 (3) | 0.02271 (9) | |
N1 | 0.29004 (10) | 0.08109 (6) | 0.78128 (10) | 0.0123 (2) | |
N2 | 0.38924 (11) | 0.17329 (6) | 0.96878 (9) | 0.0121 (2) | |
O1 | 0.52796 (9) | 0.06756 (6) | 0.87615 (9) | 0.01627 (19) | |
O2 | 0.46793 (9) | 0.18884 (6) | 0.75688 (8) | 0.0161 (2) | |
O3 | 0.16339 (9) | 0.19465 (6) | 0.76460 (9) | 0.0177 (2) | |
O4 | 0.06748 (9) | 0.07794 (6) | 0.70365 (9) | 0.0181 (2) | |
S1 | 0.43157 (3) | 0.129314 (19) | 0.84310 (3) | 0.01123 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0159 (6) | 0.0112 (7) | 0.0153 (6) | 0.0002 (5) | −0.0004 (4) | −0.0037 (5) |
C2 | 0.0169 (6) | 0.0110 (7) | 0.0219 (7) | −0.0006 (5) | 0.0011 (5) | −0.0016 (5) |
C3 | 0.0131 (6) | 0.0153 (7) | 0.0136 (6) | −0.0015 (5) | −0.0015 (4) | 0.0027 (5) |
C4 | 0.0122 (6) | 0.0221 (8) | 0.0283 (7) | −0.0004 (5) | −0.0076 (5) | 0.0057 (6) |
C5 | 0.0238 (8) | 0.0296 (9) | 0.0438 (10) | −0.0088 (6) | −0.0159 (7) | 0.0055 (7) |
C6 | 0.0227 (7) | 0.0311 (9) | 0.0292 (8) | −0.0003 (6) | −0.0074 (6) | 0.0102 (7) |
C7 | 0.0161 (7) | 0.0343 (9) | 0.0347 (9) | 0.0020 (6) | 0.0001 (6) | 0.0067 (7) |
C8 | 0.0183 (6) | 0.0143 (7) | 0.0120 (6) | −0.0011 (5) | −0.0008 (5) | 0.0028 (5) |
C9 | 0.0248 (7) | 0.0161 (7) | 0.0149 (6) | −0.0041 (5) | 0.0052 (5) | −0.0016 (5) |
C10 | 0.0165 (6) | 0.0094 (6) | 0.0158 (6) | −0.0009 (5) | 0.0008 (5) | 0.0000 (5) |
C11 | 0.0197 (6) | 0.0114 (7) | 0.0166 (6) | −0.0031 (5) | 0.0027 (5) | −0.0008 (5) |
Cl1 | 0.02584 (18) | 0.01139 (18) | 0.0396 (2) | −0.00249 (13) | 0.00118 (14) | −0.00252 (14) |
Cl2 | 0.01773 (16) | 0.0387 (2) | 0.02252 (18) | −0.00801 (14) | 0.00518 (12) | −0.00232 (15) |
Cl3 | 0.03418 (19) | 0.01075 (17) | 0.02329 (18) | −0.00579 (13) | 0.00268 (13) | 0.00063 (12) |
N1 | 0.0116 (5) | 0.0097 (6) | 0.0153 (5) | −0.0015 (4) | −0.0014 (4) | −0.0013 (4) |
N2 | 0.0158 (5) | 0.0093 (5) | 0.0112 (5) | −0.0010 (4) | 0.0014 (4) | −0.0002 (4) |
O1 | 0.0130 (4) | 0.0164 (5) | 0.0190 (5) | 0.0027 (4) | −0.0014 (3) | −0.0026 (4) |
O2 | 0.0182 (4) | 0.0162 (5) | 0.0139 (4) | −0.0048 (4) | 0.0031 (3) | 0.0001 (4) |
O3 | 0.0164 (4) | 0.0112 (5) | 0.0247 (5) | 0.0001 (3) | −0.0037 (4) | 0.0019 (4) |
O4 | 0.0138 (4) | 0.0142 (5) | 0.0251 (5) | −0.0013 (4) | −0.0071 (4) | 0.0017 (4) |
S1 | 0.01039 (14) | 0.01148 (17) | 0.01178 (15) | −0.00120 (11) | 0.00045 (10) | −0.00080 (11) |
C1—N1 | 1.4809 (17) | C7—H7B | 0.9600 |
C1—C2 | 1.5201 (18) | C7—H7C | 0.9600 |
C1—H1A | 0.9700 | C8—N2 | 1.4725 (16) |
C1—H1B | 0.9700 | C8—C9 | 1.5178 (18) |
C2—Cl1 | 1.7997 (14) | C8—H8A | 0.9700 |
C2—H2A | 0.9700 | C8—H8B | 0.9700 |
C2—H2B | 0.9700 | C9—Cl2 | 1.7950 (14) |
C3—O3 | 1.2074 (17) | C9—H91 | 0.9700 |
C3—O4 | 1.3364 (15) | C9—H92 | 0.9700 |
C3—N1 | 1.4020 (16) | C10—N2 | 1.4749 (17) |
C4—O4 | 1.5024 (15) | C10—C11 | 1.5255 (17) |
C4—C7 | 1.519 (2) | C10—H10A | 0.9700 |
C4—C6 | 1.523 (2) | C10—H10B | 0.9700 |
C4—C5 | 1.524 (2) | C11—Cl3 | 1.8007 (14) |
C5—H5A | 0.9600 | C11—H11A | 0.9700 |
C5—H5B | 0.9600 | C11—H11B | 0.9700 |
C5—H5C | 0.9600 | N1—S1 | 1.6875 (10) |
C6—H6A | 0.9600 | N2—S1 | 1.6147 (11) |
C6—H6B | 0.9600 | O1—S1 | 1.4345 (10) |
C6—H6C | 0.9600 | O2—S1 | 1.4326 (10) |
C7—H7A | 0.9600 | ||
N1—C1—C2 | 110.82 (10) | H7B—C7—H7C | 109.5 |
N1—C1—H1A | 109.5 | N2—C8—C9 | 114.08 (11) |
C2—C1—H1A | 109.5 | N2—C8—H8A | 108.7 |
N1—C1—H1B | 109.5 | C9—C8—H8A | 108.7 |
C2—C1—H1B | 109.5 | N2—C8—H8B | 108.7 |
H1A—C1—H1B | 108.1 | C9—C8—H8B | 108.7 |
C1—C2—Cl1 | 108.88 (9) | H8A—C8—H8B | 107.6 |
C1—C2—H2A | 109.9 | C8—C9—Cl2 | 112.10 (9) |
Cl1—C2—H2A | 109.9 | C8—C9—H91 | 109.2 |
C1—C2—H2B | 109.9 | Cl2—C9—H91 | 109.2 |
Cl1—C2—H2B | 109.9 | C8—C9—H92 | 109.2 |
H2A—C2—H2B | 108.3 | Cl2—C9—H92 | 109.2 |
O3—C3—O4 | 127.07 (12) | H91—C9—H92 | 107.9 |
O3—C3—N1 | 123.01 (11) | N2—C10—C11 | 111.92 (10) |
O4—C3—N1 | 109.92 (11) | N2—C10—H10A | 109.2 |
O4—C4—C7 | 109.86 (11) | C11—C10—H10A | 109.2 |
O4—C4—C6 | 109.51 (11) | N2—C10—H10B | 109.2 |
C7—C4—C6 | 113.49 (13) | C11—C10—H10B | 109.2 |
O4—C4—C5 | 101.24 (11) | H10A—C10—H10B | 107.9 |
C7—C4—C5 | 110.95 (13) | C10—C11—Cl3 | 107.35 (9) |
C6—C4—C5 | 111.09 (13) | C10—C11—H11A | 110.2 |
C4—C5—H5A | 109.5 | Cl3—C11—H11A | 110.2 |
C4—C5—H5B | 109.5 | C10—C11—H11B | 110.2 |
H5A—C5—H5B | 109.5 | Cl3—C11—H11B | 110.2 |
C4—C5—H5C | 109.5 | H11A—C11—H11B | 108.5 |
H5A—C5—H5C | 109.5 | C3—N1—C1 | 121.97 (10) |
H5B—C5—H5C | 109.5 | C3—N1—S1 | 117.61 (9) |
C4—C6—H6A | 109.5 | C1—N1—S1 | 119.98 (8) |
C4—C6—H6B | 109.5 | C8—N2—C10 | 119.21 (10) |
H6A—C6—H6B | 109.5 | C8—N2—S1 | 120.48 (9) |
C4—C6—H6C | 109.5 | C10—N2—S1 | 119.90 (8) |
H6A—C6—H6C | 109.5 | C3—O4—C4 | 119.72 (11) |
H6B—C6—H6C | 109.5 | O2—S1—O1 | 120.08 (6) |
C4—C7—H7A | 109.5 | O2—S1—N2 | 106.74 (6) |
C4—C7—H7B | 109.5 | O1—S1—N2 | 109.53 (6) |
H7A—C7—H7B | 109.5 | O2—S1—N1 | 108.80 (5) |
C4—C7—H7C | 109.5 | O1—S1—N1 | 103.05 (5) |
H7A—C7—H7C | 109.5 | N2—S1—N1 | 108.16 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2B···O1i | 0.97 | 2.59 | 3.5465 (16) | 167 |
C8—H8B···O1i | 0.97 | 2.58 | 3.5047 (17) | 159 |
C9—H91···O3ii | 0.97 | 2.39 | 3.3156 (17) | 160 |
C11—H11B···O2ii | 0.97 | 2.44 | 3.0428 (16) | 120 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C11H21Cl3N2O4S |
Mr | 383.71 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 9.6132 (5), 17.1282 (9), 10.6763 (5) |
β (°) | 93.868 (3) |
V (Å3) | 1753.92 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.66 |
Crystal size (mm) | 0.15 × 0.12 × 0.1 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.862, 0.937 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17775, 3982, 3662 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.068, 1.03 |
No. of reflections | 3982 |
No. of parameters | 193 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.39 |
Computer programs: SMART (Bruker, 2006) APEX2?, SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2B···O1i | 0.97 | 2.59 | 3.5465 (16) | 167.2 |
C8—H8B···O1i | 0.97 | 2.58 | 3.5047 (17) | 159.0 |
C9—H91···O3ii | 0.97 | 2.39 | 3.3156 (17) | 160.0 |
C11—H11B···O2ii | 0.97 | 2.44 | 3.0428 (16) | 120.1 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x, −y+1/2, z+1/2. |
Acknowledgements
Dr T. Roisnel is acknowledged for his assistance during the data measurement. The authors are grateful to the Université de Rennes 1 for access to the Centre de Diffractométrie X, CDIFX, available at the Laboratoire des Sciences Chimiques de Rennes. The authors are also indebted to the Université du 20 Août 1955 – Skikda (Algeria) for financial support.
References
Abdaoui, M., Dewynter, G., Aouf, N., Favre, G., Morere, A. & Montero, J. L. (1996). Bioorg. Med. Chem. 4, 1227–1235. CrossRef CAS PubMed Web of Science Google Scholar
Abdaoui, M., Dewynter, G., Toupet, L. & Montero, J.-L. (2000). Tetrahedron, 56, 2427–2435. Web of Science CSD CrossRef CAS Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dokhane, S., Benali-Cherif, N. & Abdaoui, M. (2002). Acta Cryst. E58, o570–o572. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Galešić, N., Kovačević, K., Vlahov, A. & Galešić, M. (1987). Acta Cryst. C43, 2350–2353. CSD CrossRef Web of Science IUCr Journals Google Scholar
Gnewuch, C. T. & Sosnovsky, G. (1997). Chem. Rev. 97, 829–1014. CrossRef PubMed CAS Web of Science Google Scholar
Ishiguro, K., Seow, H. A., Penketh, P. G., Shyam, K. & Sartorelli, A. C. (2006). Mol. Cancer Ther. 5, 969–976. Web of Science CrossRef PubMed CAS Google Scholar
Jonnalagadda, S. C., Reddy, A. V., Kovich, K. T. & Mereddy, V. R. (2007). Abstracts, 42nd Midwest Regional Meeting of the American Chemical Society, Kansas City, Missouri, USA, November 7–10, Abstract No. 165. Google Scholar
Mitsunobu, O. (1981). Synthesis, pp. 1–28. CrossRef Web of Science Google Scholar
Passagne, I., Evrard, A., Winum, J.-Y., Depeille, P., Cuq, P., Montero, J.-L., Cupissol, D. & Vian, L. (2003). J. Pharmacol. Exp. Ther. 307, 816–823. Web of Science CrossRef PubMed CAS Google Scholar
Seridi, A., Kadri, M., Abdaoui, M., Winum, J.-Y. & Montero, J.-L. (2006). Bioorg. Med. Chem. Lett. 16, 1021–1027. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skinner, M. D. & Scharts, R. S. (1972). N. Engl. J. Med. 287, 221–227. CrossRef CAS PubMed Web of Science Google Scholar
Voutsinas, G., Kappa, A. S., Demopoulos, N. A. & Catsoulacos, P. (1993). Mutagenesis, 8, 431–435. CrossRef CAS PubMed Web of Science Google Scholar
Winum, J.-Y., Bouissière, J.-L., Passagne, I., Evrard, A., Montero, V., Cuq, P. & Montero, J.-L. (2003). Eur. J. Med. Chem. 38, 319–324. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Compounds with one or more N-(2-chloroethyl) moieties show many pharmacological activities (Galešić et al., 1987). They are cytotoxic (Ishiguro et al., 2006), mutagenic (Voutsinas et al., 1993), and immuno-suppressive (Skinner & Scharts, 1972). Many of them include Mechlorethamine, Chlorambucil, Melphalan,Cyclophosmamide, Ifosfamide, are used for the treatment of wide variety of cancers (Jonnalagadda et al., 2007). Among others, N-(2-chloroethyl) nitrososulfamides (CENS) are promising antitumoral agents which have been developed as new family of alkylating agents structurally related to 2-chloroethylnitrosoureas (CENU) (Abdaoui et al., 1996). A certain number of these derivatives exhibited interesting cytotoxic activity and among them, some prouved to be considerably more potent than the parent nitrosourea (Abdaoui et al., 2000; Gnewuch & Sosnovsky, 1997; Passagne et al., 2003; Seridi et al., 2006; Winum et al., 2003).
In order to extend our knowledge about such sulfamides derivatives with three N-(2-chloroethyl) moieties the crystal structure of the title compound is presented.
In all essential details, the molecular geometry in terms of bond distances and angles is in good agreement with related structure (Dokhane et al. 2002). In the molecular geometry (Fig.1), the sulfamide moiety N1—S—N2 exhibit an asymmetry of S—N bond distance, with values of 1.688 (1) and 1.615 (1) Å respectively. The molecules are linked by four C—H···O intermolecular interactions involving sulfonamide (oxygen atoms O1 and O2) and carbonyl (oxygen atom O3) functions (table 1). Thus, these interactions lead to an infinite three-dimensional network.