organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2543-o2544

tert-Butyl N-[N,N-bis­­(2-chloro­ethyl)sulfamo­yl]-N-(2-chloro­ethyl)carbamate

aDépartement des Sciences Fondamentales, Faculté des Sciences, Université du 20 Août 1955 – Skikda, Route d′El-Hadaïk, BP 26, 21000 Skikda, Algeria, bInstitut des Biomolécules Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8, Rue de l'Ecole Normale, 34296 Montpellier Cedex, France, cSciences Chimiques de Rennes (UMR CNRS 6226), Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France, and dLaboratoire de Chimie Appliquée, Université du 8 Mai 1945 – Guelma, BP 401, 24000 Guelma, Algeria
*Correspondence e-mail: seridi_a@yahoo.fr

(Received 17 September 2009; accepted 21 September 2009; online 26 September 2009)

The title compound, C11H21Cl3N2O4S, was produced as part of a development programme of a new synthetic route to chloro­ethyl­nitro­sosulfamides (CENS) with three chloro­ethyl moieties. These compounds possess structural features that confer potential biological activity and act as alkyl­ating agents. The packing is governed by four weak C—H⋯O inter­actions, forming an infinite three-dimensional network.

Related literature

For the potential biological activity, pharmaceutical utility and cytotoxic activity of chloro­ethyl­nitro­sosulfamides, see: Abdaoui et al. (1996[Abdaoui, M., Dewynter, G., Aouf, N., Favre, G., Morere, A. & Montero, J. L. (1996). Bioorg. Med. Chem. 4, 1227-1235.], 2000[Abdaoui, M., Dewynter, G., Toupet, L. & Montero, J.-L. (2000). Tetrahedron, 56, 2427-2435.]); Dokhane et al. (2002[Dokhane, S., Benali-Cherif, N. & Abdaoui, M. (2002). Acta Cryst. E58, o570-o572.]); Galešić et al. (1987[Galešić, N., Kovačević, K., Vlahov, A. & Galešić, M. (1987). Acta Cryst. C43, 2350-2353.]); Gnewuch & Sosnovsky (1997[Gnewuch, C. T. & Sosnovsky, G. (1997). Chem. Rev. 97, 829-1014.]); Ishiguro et al. (2006[Ishiguro, K., Seow, H. A., Penketh, P. G., Shyam, K. & Sartorelli, A. C. (2006). Mol. Cancer Ther. 5, 969-976.]); Jonnalagadda et al. (2007[Jonnalagadda, S. C., Reddy, A. V., Kovich, K. T. & Mereddy, V. R. (2007). Abstracts, 42nd Midwest Regional Meeting of the American Chemical Society, Kansas City, Missouri, USA, November 7-10, Abstract No. 165.]); Passagne et al. (2003[Passagne, I., Evrard, A., Winum, J.-Y., Depeille, P., Cuq, P., Montero, J.-L., Cupissol, D. & Vian, L. (2003). J. Pharmacol. Exp. Ther. 307, 816-823.]); Seridi et al. (2006[Seridi, A., Kadri, M., Abdaoui, M., Winum, J.-Y. & Montero, J.-L. (2006). Bioorg. Med. Chem. Lett. 16, 1021-1027.]); Skinner & Scharts (1972[Skinner, M. D. & Scharts, R. S. (1972). N. Engl. J. Med. 287, 221-227.]); Voutsinas et al. (1993[Voutsinas, G., Kappa, A. S., Demopoulos, N. A. & Catsoulacos, P. (1993). Mutagenesis, 8, 431-435.]); Winum et al. (2003[Winum, J.-Y., Bouissière, J.-L., Passagne, I., Evrard, A., Montero, V., Cuq, P. & Montero, J.-L. (2003). Eur. J. Med. Chem. 38, 319-324.]). For the synthetic procedure, see: Mitsunobu (1981[Mitsunobu, O. (1981). Synthesis, pp. 1-28.]).

[Scheme 1]

Experimental

Crystal data
  • C11H21Cl3N2O4S

  • Mr = 383.71

  • Monoclinic, P 21 /c

  • a = 9.6132 (5) Å

  • b = 17.1282 (9) Å

  • c = 10.6763 (5) Å

  • β = 93.868 (3)°

  • V = 1753.92 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 100 K

  • 0.15 × 0.12 × 0.1 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.862, Tmax = 0.937

  • 17775 measured reflections

  • 3982 independent reflections

  • 3662 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.068

  • S = 1.03

  • 3982 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.97 2.59 3.5465 (16) 167
C8—H8B⋯O1i 0.97 2.58 3.5047 (17) 159
C9—H91⋯O3ii 0.97 2.39 3.3156 (17) 160
C11—H11B⋯O2ii 0.97 2.44 3.0428 (16) 120
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2006[Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Compounds with one or more N-(2-chloroethyl) moieties show many pharmacological activities (Galešić et al., 1987). They are cytotoxic (Ishiguro et al., 2006), mutagenic (Voutsinas et al., 1993), and immuno-suppressive (Skinner & Scharts, 1972). Many of them include Mechlorethamine, Chlorambucil, Melphalan,Cyclophosmamide, Ifosfamide, are used for the treatment of wide variety of cancers (Jonnalagadda et al., 2007). Among others, N-(2-chloroethyl) nitrososulfamides (CENS) are promising antitumoral agents which have been developed as new family of alkylating agents structurally related to 2-chloroethylnitrosoureas (CENU) (Abdaoui et al., 1996). A certain number of these derivatives exhibited interesting cytotoxic activity and among them, some prouved to be considerably more potent than the parent nitrosourea (Abdaoui et al., 2000; Gnewuch & Sosnovsky, 1997; Passagne et al., 2003; Seridi et al., 2006; Winum et al., 2003).

In order to extend our knowledge about such sulfamides derivatives with three N-(2-chloroethyl) moieties the crystal structure of the title compound is presented.

In all essential details, the molecular geometry in terms of bond distances and angles is in good agreement with related structure (Dokhane et al. 2002). In the molecular geometry (Fig.1), the sulfamide moiety N1—S—N2 exhibit an asymmetry of S—N bond distance, with values of 1.688 (1) and 1.615 (1) Å respectively. The molecules are linked by four C—H···O intermolecular interactions involving sulfonamide (oxygen atoms O1 and O2) and carbonyl (oxygen atom O3) functions (table 1). Thus, these interactions lead to an infinite three-dimensional network.

Related literature top

For the potential biological activity, pharmaceutical utility and cytotoxic activity of chloroethylnitrososulfamides, see: Abdaoui et al. (1996, 2000); Dokhane et al. (2002); Galešić et al. (1987); Gnewuch & Sosnovsky (1997); Ishiguro et al. (2006); Jonnalagadda et al. (2007); Passagne et al. (2003); Seridi et al. (2006); Skinner et al. (1972); Voutsinas et al. (1993); Winum et al. (2003). For the synthetic procedure, see: Mitsunobu (1981).

Experimental top

The synthetic pathway used for the preparation of the title compound is outlined in Fig. 2. First the formation of tert-butylN-(2-chloroethyl)sulfamoylcarbamate which is performed in dried dichloromethane with successive addition of tBuOH, and Chloroethylamine/TEA into CSI. After purification, the carbamate was recovered at (yield 80%). The second step is carried out according to the Mitsunobu procedure (Mitsunobu, 1981) in anhydrous THF as a solvent. The mixture of DEAD (diethyl azodicarboxylate) and tert-butylN-(2-chloroethyl)sulfamoylcarbamate is added to a solution of excess of chloroethanol and PPh3. The product was recrystallized in pure ethanol.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined isotropically using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.97 Å (methylene) or 0.96Å (methyl) and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2006) APEX2?; cell refinement: SMART (Bruker, 2006) APEX2?; data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. (Farrugia, 1997) The molecule of the title compound in the crystal. Ellipsoids correspond to 50% probability levels and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Synthesis of the title compound.
tert-Butyl N-[N,N-bis(2-chloroethyl)sulfamoyl]- N-(2-chloroethyl)carbamate top
Crystal data top
C11H21Cl3N2O4SF(000) = 800
Mr = 383.71Dx = 1.453 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9788 reflections
a = 9.6132 (5) Åθ = 2.4–27.4°
b = 17.1282 (9) ŵ = 0.66 mm1
c = 10.6763 (5) ÅT = 100 K
β = 93.868 (3)°Prism, colourless
V = 1753.92 (15) Å30.15 × 0.12 × 0.1 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3982 independent reflections
Radiation source: APEXII, Bruker-AXS3662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
CCD rotation images, thick slices scansθmax = 27.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1211
Tmin = 0.862, Tmax = 0.937k = 2221
17775 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0272P)2 + 0.8873P]
where P = (Fo2 + 2Fc2)/3
3982 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C11H21Cl3N2O4SV = 1753.92 (15) Å3
Mr = 383.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6132 (5) ŵ = 0.66 mm1
b = 17.1282 (9) ÅT = 100 K
c = 10.6763 (5) Å0.15 × 0.12 × 0.1 mm
β = 93.868 (3)°
Data collection top
Bruker APEXII
diffractometer
3982 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3662 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.937Rint = 0.037
17775 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
3982 reflectionsΔρmin = 0.39 e Å3
193 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30088 (13)0.00247 (8)0.74767 (12)0.0142 (3)
H1A0.39770.01550.73750.017*
H1B0.24830.01200.66840.017*
C20.24504 (14)0.05402 (8)0.84875 (13)0.0166 (3)
H2A0.15110.03810.86490.020*
H2B0.30330.04890.92610.020*
C30.16945 (13)0.12486 (8)0.74993 (12)0.0141 (3)
C40.07329 (14)0.11154 (9)0.66503 (14)0.0212 (3)
C50.15279 (16)0.03860 (10)0.62057 (17)0.0332 (4)
H5A0.10900.01620.55080.050*
H5B0.24730.05230.59500.050*
H5C0.15210.00140.68780.050*
C60.05995 (16)0.16890 (10)0.55745 (15)0.0281 (3)
H6A0.01280.21510.58850.042*
H6B0.15110.18250.52200.042*
H6C0.00750.14520.49410.042*
C70.13690 (15)0.14725 (10)0.77813 (15)0.0285 (3)
H7A0.13750.10920.84420.043*
H7B0.23070.16350.75500.043*
H7C0.08270.19160.80680.043*
C80.38802 (13)0.13068 (8)1.08849 (12)0.0150 (3)
H8A0.45970.15231.14680.018*
H8B0.41150.07651.07410.018*
C90.24946 (14)0.13378 (8)1.14857 (13)0.0184 (3)
H910.22390.18791.16090.022*
H920.25940.10901.23040.022*
C100.36795 (13)0.25857 (8)0.96777 (12)0.0139 (3)
H10A0.31440.27311.03790.017*
H10B0.31460.27330.89100.017*
C110.50586 (14)0.30294 (8)0.97652 (12)0.0158 (3)
H11A0.55930.29040.90530.019*
H11B0.56050.28881.05280.019*
Cl10.24477 (4)0.15386 (2)0.79617 (4)0.02567 (9)
Cl20.11302 (3)0.08604 (2)1.05440 (3)0.02616 (10)
Cl30.46514 (4)0.40555 (2)0.97723 (3)0.02271 (9)
N10.29004 (10)0.08109 (6)0.78128 (10)0.0123 (2)
N20.38924 (11)0.17329 (6)0.96878 (9)0.0121 (2)
O10.52796 (9)0.06756 (6)0.87615 (9)0.01627 (19)
O20.46793 (9)0.18884 (6)0.75688 (8)0.0161 (2)
O30.16339 (9)0.19465 (6)0.76460 (9)0.0177 (2)
O40.06748 (9)0.07794 (6)0.70365 (9)0.0181 (2)
S10.43157 (3)0.129314 (19)0.84310 (3)0.01123 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0159 (6)0.0112 (7)0.0153 (6)0.0002 (5)0.0004 (4)0.0037 (5)
C20.0169 (6)0.0110 (7)0.0219 (7)0.0006 (5)0.0011 (5)0.0016 (5)
C30.0131 (6)0.0153 (7)0.0136 (6)0.0015 (5)0.0015 (4)0.0027 (5)
C40.0122 (6)0.0221 (8)0.0283 (7)0.0004 (5)0.0076 (5)0.0057 (6)
C50.0238 (8)0.0296 (9)0.0438 (10)0.0088 (6)0.0159 (7)0.0055 (7)
C60.0227 (7)0.0311 (9)0.0292 (8)0.0003 (6)0.0074 (6)0.0102 (7)
C70.0161 (7)0.0343 (9)0.0347 (9)0.0020 (6)0.0001 (6)0.0067 (7)
C80.0183 (6)0.0143 (7)0.0120 (6)0.0011 (5)0.0008 (5)0.0028 (5)
C90.0248 (7)0.0161 (7)0.0149 (6)0.0041 (5)0.0052 (5)0.0016 (5)
C100.0165 (6)0.0094 (6)0.0158 (6)0.0009 (5)0.0008 (5)0.0000 (5)
C110.0197 (6)0.0114 (7)0.0166 (6)0.0031 (5)0.0027 (5)0.0008 (5)
Cl10.02584 (18)0.01139 (18)0.0396 (2)0.00249 (13)0.00118 (14)0.00252 (14)
Cl20.01773 (16)0.0387 (2)0.02252 (18)0.00801 (14)0.00518 (12)0.00232 (15)
Cl30.03418 (19)0.01075 (17)0.02329 (18)0.00579 (13)0.00268 (13)0.00063 (12)
N10.0116 (5)0.0097 (6)0.0153 (5)0.0015 (4)0.0014 (4)0.0013 (4)
N20.0158 (5)0.0093 (5)0.0112 (5)0.0010 (4)0.0014 (4)0.0002 (4)
O10.0130 (4)0.0164 (5)0.0190 (5)0.0027 (4)0.0014 (3)0.0026 (4)
O20.0182 (4)0.0162 (5)0.0139 (4)0.0048 (4)0.0031 (3)0.0001 (4)
O30.0164 (4)0.0112 (5)0.0247 (5)0.0001 (3)0.0037 (4)0.0019 (4)
O40.0138 (4)0.0142 (5)0.0251 (5)0.0013 (4)0.0071 (4)0.0017 (4)
S10.01039 (14)0.01148 (17)0.01178 (15)0.00120 (11)0.00045 (10)0.00080 (11)
Geometric parameters (Å, º) top
C1—N11.4809 (17)C7—H7B0.9600
C1—C21.5201 (18)C7—H7C0.9600
C1—H1A0.9700C8—N21.4725 (16)
C1—H1B0.9700C8—C91.5178 (18)
C2—Cl11.7997 (14)C8—H8A0.9700
C2—H2A0.9700C8—H8B0.9700
C2—H2B0.9700C9—Cl21.7950 (14)
C3—O31.2074 (17)C9—H910.9700
C3—O41.3364 (15)C9—H920.9700
C3—N11.4020 (16)C10—N21.4749 (17)
C4—O41.5024 (15)C10—C111.5255 (17)
C4—C71.519 (2)C10—H10A0.9700
C4—C61.523 (2)C10—H10B0.9700
C4—C51.524 (2)C11—Cl31.8007 (14)
C5—H5A0.9600C11—H11A0.9700
C5—H5B0.9600C11—H11B0.9700
C5—H5C0.9600N1—S11.6875 (10)
C6—H6A0.9600N2—S11.6147 (11)
C6—H6B0.9600O1—S11.4345 (10)
C6—H6C0.9600O2—S11.4326 (10)
C7—H7A0.9600
N1—C1—C2110.82 (10)H7B—C7—H7C109.5
N1—C1—H1A109.5N2—C8—C9114.08 (11)
C2—C1—H1A109.5N2—C8—H8A108.7
N1—C1—H1B109.5C9—C8—H8A108.7
C2—C1—H1B109.5N2—C8—H8B108.7
H1A—C1—H1B108.1C9—C8—H8B108.7
C1—C2—Cl1108.88 (9)H8A—C8—H8B107.6
C1—C2—H2A109.9C8—C9—Cl2112.10 (9)
Cl1—C2—H2A109.9C8—C9—H91109.2
C1—C2—H2B109.9Cl2—C9—H91109.2
Cl1—C2—H2B109.9C8—C9—H92109.2
H2A—C2—H2B108.3Cl2—C9—H92109.2
O3—C3—O4127.07 (12)H91—C9—H92107.9
O3—C3—N1123.01 (11)N2—C10—C11111.92 (10)
O4—C3—N1109.92 (11)N2—C10—H10A109.2
O4—C4—C7109.86 (11)C11—C10—H10A109.2
O4—C4—C6109.51 (11)N2—C10—H10B109.2
C7—C4—C6113.49 (13)C11—C10—H10B109.2
O4—C4—C5101.24 (11)H10A—C10—H10B107.9
C7—C4—C5110.95 (13)C10—C11—Cl3107.35 (9)
C6—C4—C5111.09 (13)C10—C11—H11A110.2
C4—C5—H5A109.5Cl3—C11—H11A110.2
C4—C5—H5B109.5C10—C11—H11B110.2
H5A—C5—H5B109.5Cl3—C11—H11B110.2
C4—C5—H5C109.5H11A—C11—H11B108.5
H5A—C5—H5C109.5C3—N1—C1121.97 (10)
H5B—C5—H5C109.5C3—N1—S1117.61 (9)
C4—C6—H6A109.5C1—N1—S1119.98 (8)
C4—C6—H6B109.5C8—N2—C10119.21 (10)
H6A—C6—H6B109.5C8—N2—S1120.48 (9)
C4—C6—H6C109.5C10—N2—S1119.90 (8)
H6A—C6—H6C109.5C3—O4—C4119.72 (11)
H6B—C6—H6C109.5O2—S1—O1120.08 (6)
C4—C7—H7A109.5O2—S1—N2106.74 (6)
C4—C7—H7B109.5O1—S1—N2109.53 (6)
H7A—C7—H7B109.5O2—S1—N1108.80 (5)
C4—C7—H7C109.5O1—S1—N1103.05 (5)
H7A—C7—H7C109.5N2—S1—N1108.16 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.972.593.5465 (16)167
C8—H8B···O1i0.972.583.5047 (17)159
C9—H91···O3ii0.972.393.3156 (17)160
C11—H11B···O2ii0.972.443.0428 (16)120
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H21Cl3N2O4S
Mr383.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.6132 (5), 17.1282 (9), 10.6763 (5)
β (°) 93.868 (3)
V3)1753.92 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.15 × 0.12 × 0.1
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.862, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
17775, 3982, 3662
Rint0.037
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.03
No. of reflections3982
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.39

Computer programs: SMART (Bruker, 2006) APEX2?, SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.972.593.5465 (16)167.2
C8—H8B···O1i0.972.583.5047 (17)159.0
C9—H91···O3ii0.972.393.3156 (17)160.0
C11—H11B···O2ii0.972.443.0428 (16)120.1
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

Dr T. Roisnel is acknowledged for his assistance during the data measurement. The authors are grateful to the Université de Rennes 1 for access to the Centre de Diffractométrie X, CDIFX, available at the Laboratoire des Sciences Chimiques de Rennes. The authors are also indebted to the Université du 20 Août 1955 – Skikda (Algeria) for financial support.

References

First citationAbdaoui, M., Dewynter, G., Aouf, N., Favre, G., Morere, A. & Montero, J. L. (1996). Bioorg. Med. Chem. 4, 1227–1235.  CrossRef CAS PubMed Web of Science Google Scholar
First citationAbdaoui, M., Dewynter, G., Toupet, L. & Montero, J.-L. (2000). Tetrahedron, 56, 2427–2435.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDokhane, S., Benali-Cherif, N. & Abdaoui, M. (2002). Acta Cryst. E58, o570–o572.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGalešić, N., Kovačević, K., Vlahov, A. & Galešić, M. (1987). Acta Cryst. C43, 2350–2353.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationGnewuch, C. T. & Sosnovsky, G. (1997). Chem. Rev. 97, 829–1014.  CrossRef PubMed CAS Web of Science Google Scholar
First citationIshiguro, K., Seow, H. A., Penketh, P. G., Shyam, K. & Sartorelli, A. C. (2006). Mol. Cancer Ther. 5, 969–976.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJonnalagadda, S. C., Reddy, A. V., Kovich, K. T. & Mereddy, V. R. (2007). Abstracts, 42nd Midwest Regional Meeting of the American Chemical Society, Kansas City, Missouri, USA, November 7–10, Abstract No. 165.  Google Scholar
First citationMitsunobu, O. (1981). Synthesis, pp. 1–28.  CrossRef Web of Science Google Scholar
First citationPassagne, I., Evrard, A., Winum, J.-Y., Depeille, P., Cuq, P., Montero, J.-L., Cupissol, D. & Vian, L. (2003). J. Pharmacol. Exp. Ther. 307, 816–823.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeridi, A., Kadri, M., Abdaoui, M., Winum, J.-Y. & Montero, J.-L. (2006). Bioorg. Med. Chem. Lett. 16, 1021–1027.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkinner, M. D. & Scharts, R. S. (1972). N. Engl. J. Med. 287, 221–227.  CrossRef CAS PubMed Web of Science Google Scholar
First citationVoutsinas, G., Kappa, A. S., Demopoulos, N. A. & Catsoulacos, P. (1993). Mutagenesis, 8, 431–435.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWinum, J.-Y., Bouissière, J.-L., Passagne, I., Evrard, A., Montero, V., Cuq, P. & Montero, J.-L. (2003). Eur. J. Med. Chem. 38, 319–324.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2543-o2544
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds