organic compounds
(RS/SR)-2-Oxo-4-phenylazetidin-3-yl acetate
aSchool of Information and Communication Engineering, North University of China, Taiyuan 030051, People's Republic of China
*Correspondence e-mail: liyangjun2010@126.com
In the title compound, C11H11NO3, a modified synthetic acetate derivative, the four memebered β-lactam ring is roughly planar, with a maximum deviation of 0.21 (3) Å, and makes a dihedral angle of 81.46 (14)° with the phenyl ring. In the crystal, a single N—H⋯O hydrogen bond links molecules into a chain parallel to the a axis and thus stabilizes the structure. Although the could not be reliably determined, the compound corresponds to the diasteroisomer (RS/SR)
Related literature
For properties of et al. (2005); Deschamps et al. (2003); Kanazawa et al. (1993). For a related structure, see: Akkurt et al. (2007).
see: SelvanayagamExperimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809038860/dn2490sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809038860/dn2490Isup2.hkl
The title compound was obtained by direct mixing of equimolar (28mg, 0.1mmol) Zn(OAC)2.6H2O of water solution (8mL) and 2-Oxo-4-phenylazetidin-3-yl acetate (21mg, 0.1mmol), and CH3CN and CH3CH2OH solutions (5mL). using slow evaporation of the solvent at room temperature over a period of about two weeks.
In the absence of significant
the could not be reliably determined and then the Friedel pairs were merged and any references to the were removed.All H atoms were placed in calculated positions (C-H = 0.93 (aromatic), N-H=0.86, or 0.96 Å (methyl)) refined using a riding model, with Uiso(H) = 1.2Ueq(C)(aromatic), Uiso(H) = 1.5Ueq(C) (methyl).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C11H11NO3 | F(000) = 432 |
Mr = 205.21 | Dx = 1.340 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1899 reflections |
a = 5.940 (4) Å | θ = 2.0–25.5° |
b = 8.198 (4) Å | µ = 0.10 mm−1 |
c = 20.896 (13) Å | T = 298 K |
V = 1017.6 (11) Å3 | Block, colorless |
Z = 4 | 0.21 × 0.16 × 0.10 mm |
Bruker APEXII area-detector diffractometer | 1126 independent reflections |
Radiation source: fine-focus sealed tube | 853 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 25.5°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −7→7 |
Tmin = 0.980, Tmax = 0.990 | k = 0→9 |
1899 measured reflections | l = −25→0 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.17 | w = 1/[σ2(Fo2) + (0.0728P)2] where P = (Fo2 + 2Fc2)/3 |
1126 reflections | (Δ/σ)max = 0.001 |
137 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C11H11NO3 | V = 1017.6 (11) Å3 |
Mr = 205.21 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.940 (4) Å | µ = 0.10 mm−1 |
b = 8.198 (4) Å | T = 298 K |
c = 20.896 (13) Å | 0.21 × 0.16 × 0.10 mm |
Bruker APEXII area-detector diffractometer | 1126 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 853 reflections with I > 2σ(I) |
Tmin = 0.980, Tmax = 0.990 | Rint = 0.027 |
1899 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.17 | Δρmax = 0.17 e Å−3 |
1126 reflections | Δρmin = −0.19 e Å−3 |
137 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6268 (6) | 0.7783 (4) | 0.93447 (16) | 0.0536 (9) | |
H1 | 0.7589 | 0.8249 | 0.9498 | 0.064* | |
C2 | 0.5969 (7) | 0.6098 (4) | 0.93779 (16) | 0.0598 (10) | |
H2 | 0.7093 | 0.5443 | 0.9551 | 0.072* | |
C3 | 0.4038 (7) | 0.5413 (4) | 0.91576 (16) | 0.0613 (10) | |
H3 | 0.3853 | 0.4288 | 0.9176 | 0.074* | |
C4 | 0.2362 (7) | 0.6368 (4) | 0.89092 (16) | 0.0624 (10) | |
H4 | 0.1036 | 0.5894 | 0.8763 | 0.075* | |
C5 | 0.2647 (6) | 0.8040 (4) | 0.88758 (14) | 0.0543 (9) | |
H5 | 0.1502 | 0.8688 | 0.8710 | 0.065* | |
C6 | 0.4617 (5) | 0.8759 (4) | 0.90866 (13) | 0.0412 (7) | |
C7 | 0.4897 (6) | 1.0577 (3) | 0.90075 (14) | 0.0449 (7) | |
H7 | 0.3451 | 1.1122 | 0.8935 | 0.054* | |
C8 | 0.7926 (6) | 1.1852 (3) | 0.91243 (13) | 0.0434 (7) | |
C9 | 0.6733 (5) | 1.1182 (3) | 0.85319 (13) | 0.0418 (7) | |
H9 | 0.6188 | 1.2043 | 0.8246 | 0.050* | |
C10 | 0.7031 (7) | 0.9236 (4) | 0.77046 (14) | 0.0523 (9) | |
C11 | 0.8572 (7) | 0.7982 (4) | 0.74195 (15) | 0.0747 (12) | |
H11A | 0.8191 | 0.6924 | 0.7584 | 0.112* | |
H11B | 1.0101 | 0.8237 | 0.7530 | 0.112* | |
H11C | 0.8409 | 0.7984 | 0.6962 | 0.112* | |
N1 | 0.6232 (5) | 1.1404 (3) | 0.95028 (11) | 0.0480 (7) | |
H1A | 0.5996 | 1.1550 | 0.9905 | 0.058* | |
O1 | 0.9694 (4) | 1.2566 (3) | 0.92206 (9) | 0.0555 (6) | |
O2 | 0.8050 (4) | 0.9987 (2) | 0.82088 (8) | 0.0468 (6) | |
O3 | 0.5181 (5) | 0.9564 (3) | 0.75310 (12) | 0.0712 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.048 (2) | 0.0518 (18) | 0.0607 (19) | 0.0040 (16) | −0.0083 (17) | −0.0020 (16) |
C2 | 0.067 (3) | 0.0467 (18) | 0.065 (2) | 0.0129 (18) | −0.001 (2) | 0.0082 (16) |
C3 | 0.072 (3) | 0.0455 (17) | 0.066 (2) | −0.0057 (19) | 0.009 (2) | −0.0021 (16) |
C4 | 0.057 (2) | 0.0561 (19) | 0.074 (2) | −0.0084 (18) | −0.003 (2) | −0.0076 (17) |
C5 | 0.050 (2) | 0.0534 (18) | 0.0593 (19) | 0.0017 (17) | −0.0051 (17) | −0.0001 (15) |
C6 | 0.0416 (19) | 0.0429 (14) | 0.0391 (14) | 0.0017 (15) | 0.0034 (14) | −0.0025 (12) |
C7 | 0.0427 (19) | 0.0433 (15) | 0.0486 (15) | 0.0005 (15) | 0.0000 (15) | −0.0026 (12) |
C8 | 0.049 (2) | 0.0366 (14) | 0.0448 (16) | 0.0036 (15) | −0.0017 (16) | −0.0025 (12) |
C9 | 0.0434 (19) | 0.0418 (13) | 0.0403 (14) | 0.0038 (15) | −0.0018 (14) | −0.0026 (13) |
C10 | 0.061 (2) | 0.0573 (18) | 0.0385 (15) | −0.0031 (18) | −0.0030 (16) | −0.0029 (13) |
C11 | 0.073 (3) | 0.083 (2) | 0.068 (2) | 0.009 (2) | −0.002 (2) | −0.030 (2) |
N1 | 0.0590 (18) | 0.0466 (13) | 0.0383 (12) | −0.0024 (13) | 0.0040 (13) | −0.0064 (11) |
O1 | 0.0506 (15) | 0.0620 (13) | 0.0540 (12) | −0.0106 (12) | −0.0019 (11) | −0.0112 (10) |
O2 | 0.0450 (13) | 0.0540 (11) | 0.0415 (11) | 0.0019 (12) | −0.0005 (9) | −0.0109 (9) |
O3 | 0.0721 (18) | 0.0842 (16) | 0.0572 (12) | 0.0093 (16) | −0.0186 (13) | −0.0125 (12) |
C1—C6 | 1.376 (4) | C7—H7 | 0.9800 |
C1—C2 | 1.395 (4) | C8—O1 | 1.219 (4) |
C1—H1 | 0.9300 | C8—N1 | 1.332 (4) |
C2—C3 | 1.357 (5) | C8—C9 | 1.529 (4) |
C2—H2 | 0.9300 | C9—O2 | 1.424 (3) |
C3—C4 | 1.369 (5) | C9—H9 | 0.9800 |
C3—H3 | 0.9300 | C10—O3 | 1.188 (4) |
C4—C5 | 1.383 (4) | C10—O2 | 1.362 (4) |
C4—H4 | 0.9300 | C10—C11 | 1.500 (5) |
C5—C6 | 1.382 (4) | C11—H11A | 0.9600 |
C5—H5 | 0.9300 | C11—H11B | 0.9600 |
C6—C7 | 1.509 (4) | C11—H11C | 0.9600 |
C7—N1 | 1.469 (4) | N1—H1A | 0.8600 |
C7—C9 | 1.556 (4) | ||
C6—C1—C2 | 120.3 (4) | C9—C7—H7 | 111.8 |
C6—C1—H1 | 119.8 | O1—C8—N1 | 133.3 (3) |
C2—C1—H1 | 119.8 | O1—C8—C9 | 134.9 (3) |
C3—C2—C1 | 120.0 (4) | N1—C8—C9 | 91.8 (2) |
C3—C2—H2 | 120.0 | O2—C9—C8 | 112.1 (2) |
C1—C2—H2 | 120.0 | O2—C9—C7 | 117.9 (2) |
C2—C3—C4 | 120.4 (3) | C8—C9—C7 | 85.5 (2) |
C2—C3—H3 | 119.8 | O2—C9—H9 | 112.8 |
C4—C3—H3 | 119.8 | C8—C9—H9 | 112.8 |
C3—C4—C5 | 119.8 (4) | C7—C9—H9 | 112.8 |
C3—C4—H4 | 120.1 | O3—C10—O2 | 123.0 (3) |
C5—C4—H4 | 120.1 | O3—C10—C11 | 126.7 (3) |
C6—C5—C4 | 120.7 (3) | O2—C10—C11 | 110.2 (3) |
C6—C5—H5 | 119.7 | C10—C11—H11A | 109.5 |
C4—C5—H5 | 119.7 | C10—C11—H11B | 109.5 |
C1—C6—C5 | 118.7 (3) | H11A—C11—H11B | 109.5 |
C1—C6—C7 | 122.6 (3) | C10—C11—H11C | 109.5 |
C5—C6—C7 | 118.7 (3) | H11A—C11—H11C | 109.5 |
N1—C7—C6 | 116.0 (3) | H11B—C11—H11C | 109.5 |
N1—C7—C9 | 85.7 (2) | C8—N1—C7 | 96.7 (2) |
C6—C7—C9 | 117.5 (2) | C8—N1—H1A | 131.6 |
N1—C7—H7 | 111.8 | C7—N1—H1A | 131.6 |
C6—C7—H7 | 111.8 | C10—O2—C9 | 115.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 | 2.11 | 2.943 (3) | 162 |
Symmetry code: (i) x−1/2, −y+5/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C11H11NO3 |
Mr | 205.21 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 5.940 (4), 8.198 (4), 20.896 (13) |
V (Å3) | 1017.6 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.21 × 0.16 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.980, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1899, 1126, 853 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.125, 1.17 |
No. of reflections | 1126 |
No. of parameters | 137 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.19 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 | 2.11 | 2.943 (3) | 162.3 |
Symmetry code: (i) x−1/2, −y+5/2, −z+2. |
Acknowledgements
The author is grateful for funding from the Natural Science Foundation of Shanxi Province (2007011033), the Program of Technological Industrialization in Universities of Shanxi Province (20070308) and the Start-up Fund of the Northern University of China.
References
Akkurt, M., Yalçın, Ş. P., Jarrahpour, A. A., Nazari, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3729–o3730. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Deschamps, J. R., McCain, M. & Konaklieva, M. (2003). Acta Cryst. E59, o36–o37. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kanazawa, A. M., Correa, A., Denis, J.-N., Luche, M.-J. & Greene, A. E. (1993). J. Org. Chem. 58, 255–257. CrossRef CAS Web of Science Google Scholar
Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, B. & Ramesh, E. (2005). Acta Cryst. E61, o3386–o3388. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, lactams have attracted much attention because they are convenient intermediates for semi-synthesis of the antitumour drug Taxol and other bioactive analogues (Kanazawa et al., 1993). Furthermore, the lactam ring (azetidin-2-one) is considered a general 'lead structure' for the design of new inhibitors of enzymes containing a serine nucleophile in the active site (Deschamps et al., 2003). In an attempt to form a Zn(II) complex with title compound, we adventitiously formed the title compound (I) and its crystal structure is determined herein.
The molecular structure of (I) is illustrated in Fig. 1. It is very similar to the related 4-(4-Nitrophenyl)-3-phenoxyazetidin-2-one (Akkurt et al., 2007). The geometry of the β-lactam ring is is planar, with a maximum deviation of 0.21 (3)° for atom N1. It makes dihedral angles of 81.46 (14)° with its phenyl substituent. The lactam ting is also comparable with a related reported structure (Selvanayagam et al., 2005). Although the absolute configuration couldn't be reliably determined, the compound correspond to the diasteroisomer (RS/SR).
Intermolecular N-H···O hydrogen bonds form a zig-zag like chain parallel to the a axis and thus stabilize the structure. (Table 1, Figure 2).