organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(RS/SR)-2-Oxo-4-phenyl­azetidin-3-yl acetate

aSchool of Information and Communication Engineering, North University of China, Taiyuan 030051, People's Republic of China
*Correspondence e-mail: liyangjun2010@126.com

(Received 23 September 2009; accepted 25 September 2009; online 30 September 2009)

In the title compound, C11H11NO3, a modified synthetic acetate derivative, the four memebered β-lactam ring is roughly planar, with a maximum deviation of 0.21 (3) Å, and makes a dihedral angle of 81.46 (14)° with the phenyl ring. In the crystal, a single N—H⋯O hydrogen bond links mol­ecules into a chain parallel to the a axis and thus stabilizes the structure. Although the absolute configuration could not be reliably determined, the compound corresponds to the diasteroisomer (RS/SR)

Related literature

For properties of lactams, see: Selvanayagam et al. (2005[Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, B. & Ramesh, E. (2005). Acta Cryst. E61, o3386-o3388.]); Deschamps et al. (2003[Deschamps, J. R., McCain, M. & Konaklieva, M. (2003). Acta Cryst. E59, o36-o37.]); Kanazawa et al. (1993[Kanazawa, A. M., Correa, A., Denis, J.-N., Luche, M.-J. & Greene, A. E. (1993). J. Org. Chem. 58, 255-257.]). For a related structure, see: Akkurt et al. (2007[Akkurt, M., Yalçın, Ş. P., Jarrahpour, A. A., Nazari, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3729-o3730.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11NO3

  • Mr = 205.21

  • Orthorhombic, P 21 21 21

  • a = 5.940 (4) Å

  • b = 8.198 (4) Å

  • c = 20.896 (13) Å

  • V = 1017.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.21 × 0.16 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.990

  • 1899 measured reflections

  • 1126 independent reflections

  • 853 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.125

  • S = 1.17

  • 1126 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.11 2.943 (3) 162
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, lactams have attracted much attention because they are convenient intermediates for semi-synthesis of the antitumour drug Taxol and other bioactive analogues (Kanazawa et al., 1993). Furthermore, the lactam ring (azetidin-2-one) is considered a general 'lead structure' for the design of new inhibitors of enzymes containing a serine nucleophile in the active site (Deschamps et al., 2003). In an attempt to form a Zn(II) complex with title compound, we adventitiously formed the title compound (I) and its crystal structure is determined herein.

The molecular structure of (I) is illustrated in Fig. 1. It is very similar to the related 4-(4-Nitrophenyl)-3-phenoxyazetidin-2-one (Akkurt et al., 2007). The geometry of the β-lactam ring is is planar, with a maximum deviation of 0.21 (3)° for atom N1. It makes dihedral angles of 81.46 (14)° with its phenyl substituent. The lactam ting is also comparable with a related reported structure (Selvanayagam et al., 2005). Although the absolute configuration couldn't be reliably determined, the compound correspond to the diasteroisomer (RS/SR).

Intermolecular N-H···O hydrogen bonds form a zig-zag like chain parallel to the a axis and thus stabilize the structure. (Table 1, Figure 2).

Related literature top

For properties of lactams, see: Selvanayagam et al. (2005); Deschamps et al. (2003); Kanazawa et al. (1993). For a related structure, see: Akkurt et al. (2007).

Experimental top

The title compound was obtained by direct mixing of equimolar (28mg, 0.1mmol) Zn(OAC)2.6H2O of water solution (8mL) and 2-Oxo-4-phenylazetidin-3-yl acetate (21mg, 0.1mmol), and CH3CN and CH3CH2OH solutions (5mL). using slow evaporation of the solvent at room temperature over a period of about two weeks.

Refinement top

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

All H atoms were placed in calculated positions (C-H = 0.93 (aromatic), N-H=0.86, or 0.96 Å (methyl)) refined using a riding model, with Uiso(H) = 1.2Ueq(C)(aromatic), Uiso(H) = 1.5Ueq(C) (methyl).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom-labeling scheme. Ellipsoids are drawn at the the 30% probability level. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the formation of the chain parallel to the a axis. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) x-1/2, -y+5/2, -z+2]
(RS/SR)-2-Oxo-4-phenylazetidin-3-yl acetate top
Crystal data top
C11H11NO3F(000) = 432
Mr = 205.21Dx = 1.340 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1899 reflections
a = 5.940 (4) Åθ = 2.0–25.5°
b = 8.198 (4) ŵ = 0.10 mm1
c = 20.896 (13) ÅT = 298 K
V = 1017.6 (11) Å3Block, colorless
Z = 40.21 × 0.16 × 0.10 mm
Data collection top
Bruker APEXII area-detector
diffractometer
1126 independent reflections
Radiation source: fine-focus sealed tube853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.980, Tmax = 0.990k = 09
1899 measured reflectionsl = 250
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0728P)2]
where P = (Fo2 + 2Fc2)/3
1126 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C11H11NO3V = 1017.6 (11) Å3
Mr = 205.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.940 (4) ŵ = 0.10 mm1
b = 8.198 (4) ÅT = 298 K
c = 20.896 (13) Å0.21 × 0.16 × 0.10 mm
Data collection top
Bruker APEXII area-detector
diffractometer
1126 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
853 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.027
1899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.17Δρmax = 0.17 e Å3
1126 reflectionsΔρmin = 0.19 e Å3
137 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6268 (6)0.7783 (4)0.93447 (16)0.0536 (9)
H10.75890.82490.94980.064*
C20.5969 (7)0.6098 (4)0.93779 (16)0.0598 (10)
H20.70930.54430.95510.072*
C30.4038 (7)0.5413 (4)0.91576 (16)0.0613 (10)
H30.38530.42880.91760.074*
C40.2362 (7)0.6368 (4)0.89092 (16)0.0624 (10)
H40.10360.58940.87630.075*
C50.2647 (6)0.8040 (4)0.88758 (14)0.0543 (9)
H50.15020.86880.87100.065*
C60.4617 (5)0.8759 (4)0.90866 (13)0.0412 (7)
C70.4897 (6)1.0577 (3)0.90075 (14)0.0449 (7)
H70.34511.11220.89350.054*
C80.7926 (6)1.1852 (3)0.91243 (13)0.0434 (7)
C90.6733 (5)1.1182 (3)0.85319 (13)0.0418 (7)
H90.61881.20430.82460.050*
C100.7031 (7)0.9236 (4)0.77046 (14)0.0523 (9)
C110.8572 (7)0.7982 (4)0.74195 (15)0.0747 (12)
H11A0.81910.69240.75840.112*
H11B1.01010.82370.75300.112*
H11C0.84090.79840.69620.112*
N10.6232 (5)1.1404 (3)0.95028 (11)0.0480 (7)
H1A0.59961.15500.99050.058*
O10.9694 (4)1.2566 (3)0.92206 (9)0.0555 (6)
O20.8050 (4)0.9987 (2)0.82088 (8)0.0468 (6)
O30.5181 (5)0.9564 (3)0.75310 (12)0.0712 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (2)0.0518 (18)0.0607 (19)0.0040 (16)0.0083 (17)0.0020 (16)
C20.067 (3)0.0467 (18)0.065 (2)0.0129 (18)0.001 (2)0.0082 (16)
C30.072 (3)0.0455 (17)0.066 (2)0.0057 (19)0.009 (2)0.0021 (16)
C40.057 (2)0.0561 (19)0.074 (2)0.0084 (18)0.003 (2)0.0076 (17)
C50.050 (2)0.0534 (18)0.0593 (19)0.0017 (17)0.0051 (17)0.0001 (15)
C60.0416 (19)0.0429 (14)0.0391 (14)0.0017 (15)0.0034 (14)0.0025 (12)
C70.0427 (19)0.0433 (15)0.0486 (15)0.0005 (15)0.0000 (15)0.0026 (12)
C80.049 (2)0.0366 (14)0.0448 (16)0.0036 (15)0.0017 (16)0.0025 (12)
C90.0434 (19)0.0418 (13)0.0403 (14)0.0038 (15)0.0018 (14)0.0026 (13)
C100.061 (2)0.0573 (18)0.0385 (15)0.0031 (18)0.0030 (16)0.0029 (13)
C110.073 (3)0.083 (2)0.068 (2)0.009 (2)0.002 (2)0.030 (2)
N10.0590 (18)0.0466 (13)0.0383 (12)0.0024 (13)0.0040 (13)0.0064 (11)
O10.0506 (15)0.0620 (13)0.0540 (12)0.0106 (12)0.0019 (11)0.0112 (10)
O20.0450 (13)0.0540 (11)0.0415 (11)0.0019 (12)0.0005 (9)0.0109 (9)
O30.0721 (18)0.0842 (16)0.0572 (12)0.0093 (16)0.0186 (13)0.0125 (12)
Geometric parameters (Å, º) top
C1—C61.376 (4)C7—H70.9800
C1—C21.395 (4)C8—O11.219 (4)
C1—H10.9300C8—N11.332 (4)
C2—C31.357 (5)C8—C91.529 (4)
C2—H20.9300C9—O21.424 (3)
C3—C41.369 (5)C9—H90.9800
C3—H30.9300C10—O31.188 (4)
C4—C51.383 (4)C10—O21.362 (4)
C4—H40.9300C10—C111.500 (5)
C5—C61.382 (4)C11—H11A0.9600
C5—H50.9300C11—H11B0.9600
C6—C71.509 (4)C11—H11C0.9600
C7—N11.469 (4)N1—H1A0.8600
C7—C91.556 (4)
C6—C1—C2120.3 (4)C9—C7—H7111.8
C6—C1—H1119.8O1—C8—N1133.3 (3)
C2—C1—H1119.8O1—C8—C9134.9 (3)
C3—C2—C1120.0 (4)N1—C8—C991.8 (2)
C3—C2—H2120.0O2—C9—C8112.1 (2)
C1—C2—H2120.0O2—C9—C7117.9 (2)
C2—C3—C4120.4 (3)C8—C9—C785.5 (2)
C2—C3—H3119.8O2—C9—H9112.8
C4—C3—H3119.8C8—C9—H9112.8
C3—C4—C5119.8 (4)C7—C9—H9112.8
C3—C4—H4120.1O3—C10—O2123.0 (3)
C5—C4—H4120.1O3—C10—C11126.7 (3)
C6—C5—C4120.7 (3)O2—C10—C11110.2 (3)
C6—C5—H5119.7C10—C11—H11A109.5
C4—C5—H5119.7C10—C11—H11B109.5
C1—C6—C5118.7 (3)H11A—C11—H11B109.5
C1—C6—C7122.6 (3)C10—C11—H11C109.5
C5—C6—C7118.7 (3)H11A—C11—H11C109.5
N1—C7—C6116.0 (3)H11B—C11—H11C109.5
N1—C7—C985.7 (2)C8—N1—C796.7 (2)
C6—C7—C9117.5 (2)C8—N1—H1A131.6
N1—C7—H7111.8C7—N1—H1A131.6
C6—C7—H7111.8C10—O2—C9115.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.112.943 (3)162
Symmetry code: (i) x1/2, y+5/2, z+2.

Experimental details

Crystal data
Chemical formulaC11H11NO3
Mr205.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)5.940 (4), 8.198 (4), 20.896 (13)
V3)1017.6 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.21 × 0.16 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
1899, 1126, 853
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.125, 1.17
No. of reflections1126
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.112.943 (3)162.3
Symmetry code: (i) x1/2, y+5/2, z+2.
 

Acknowledgements

The author is grateful for funding from the Natural Science Foundation of Shanxi Province (2007011033), the Program of Technological Industrialization in Universities of Shanxi Province (20070308) and the Start-up Fund of the Northern University of China.

References

First citationAkkurt, M., Yalçın, Ş. P., Jarrahpour, A. A., Nazari, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3729–o3730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDeschamps, J. R., McCain, M. & Konaklieva, M. (2003). Acta Cryst. E59, o36–o37.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKanazawa, A. M., Correa, A., Denis, J.-N., Luche, M.-J. & Greene, A. E. (1993). J. Org. Chem. 58, 255–257.  CrossRef CAS Web of Science Google Scholar
First citationSelvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, B. & Ramesh, E. (2005). Acta Cryst. E61, o3386–o3388.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds