metal-organic compounds
Bis(acetylacetonato-κ2O,O′)aqua(diacetylmethanido-κC)iridium(III)
aChemistry Laboratory, Kunming Institute of Precious Metals, Kunming, People's Republic of China, and bDepartment of Chemistry, Yunnan University, Kunming, People's Republic of China
*Correspondence e-mail: liuweiping0917@126.com
In the 5H7O2)3(H2O)], the IrIII atom is six-coordinated and situated in a slightly distorted octahedral environment. The complex contains both Ir—O and Ir—C bonds and was isolated from a reaction mixture of IrCl3(H2O)x, pentane-2,5-dione and NaHCO3. O—H⋯O hydrogen bonding between the water molecules and the carbonyl O atoms of adjacent molecules leads to a layered motif extending parallel to (010).
of the title compound, [Ir(CRelated literature
For background to the title compound, see: Bennett & Mitchell (1976); Bhalla et al. (2005); Gibson (1969); Matsumoto et al. (2000); Periana et al. (2002); Wong-Foy et al. (2003). For a related structure, see: Isakova et al. (1999); For background on hydrogen bonding, see: Desiraju (1996).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053680903760X/er2069sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680903760X/er2069Isup2.hkl
The complex was synthesized according literature (see Periana et al., 2002). In a round-bottom flask equipped with a reflux condenser vented to an oil bubble, 5 g of IrCl3 (H2O)x (54.34% of Ir, 14.13 mmol), 50 ml of 2, 5-pentadione (48.75 mmol) and 5 g of NaHCO3(59.5 mmol) were added. The mixture was heated to gentle reflux with stirring for 48 h. During this time, a yellow solid precipitated. The reaction mixture was cooled to room temperature and the solid was collected as crude product. The yellow solid was dissolved in 200 ml H2O at room temperature under vigorous stirring and was filtered. Solution was concentrated under vacuo to give 3.15 g (43.6%) complex as yellow microcrystalline. The compound was crystallized from water to obtain crystals suitable for X-ray structure analysis. 1HNMR (CD3OD,p.p.m.):5.54(s, 2H, CH), 5.49(s, 1H, CH), 1.96(s, 12H, CH3), 1.83(s, 6H, CH3). 13CNMR (dmso,p.p.m.): 208.4(s, C-acac, C=O), 186.1(s, O-acac, C=O), 102.6(s, O-acac, CH), 48.6(s, C-acac, CH), 31.6(s, C-acac, CH3, 26.6(s, O-acac, CH3). Anal. Calcd: Ir, 37.95; C, 35.54; H, 4.93. Found: Ir, 37.90; C, 35.48; H, 4.87.
All H atoms were initially located in a difference Fourier map but were positioned with idealized geometry and refined isotropic with Uiso(H)=1.2Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.93 and 0.97 Å).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ir(C5H7O2)3(H2O)] | Z = 2 |
Mr = 507.54 | F(000) = 492 |
Triclinic, P1 | Dx = 1.968 Mg m−3 |
a = 7.7853 (13) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.9461 (13) Å | Cell parameters from 1164 reflections |
c = 16.362 (3) Å | θ = 1.3–28.4° |
α = 77.295 (2)° | µ = 7.82 mm−1 |
β = 77.927 (2)° | T = 293 K |
γ = 60.918 (1)° | Block, orange |
V = 856.7 (3) Å3 | 0.15 × 0.13 × 0.09 mm |
Bruker APEXII CCD area-detector diffractometer | 3900 independent reflections |
Radiation source: fine-focus sealed tube | 2885 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
ϕ and ω scans | θmax = 28.4°, θmin = 1.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.387, Tmax = 0.539 | k = −10→10 |
7435 measured reflections | l = −21→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.0469P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3900 reflections | Δρmax = 2.37 e Å−3 |
215 parameters | Δρmin = −1.88 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0013 (5) |
[Ir(C5H7O2)3(H2O)] | γ = 60.918 (1)° |
Mr = 507.54 | V = 856.7 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.7853 (13) Å | Mo Kα radiation |
b = 7.9461 (13) Å | µ = 7.82 mm−1 |
c = 16.362 (3) Å | T = 293 K |
α = 77.295 (2)° | 0.15 × 0.13 × 0.09 mm |
β = 77.927 (2)° |
Bruker APEXII CCD area-detector diffractometer | 3900 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2885 reflections with I > 2σ(I) |
Tmin = 0.387, Tmax = 0.539 | Rint = 0.061 |
7435 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.03 | Δρmax = 2.37 e Å−3 |
3900 reflections | Δρmin = −1.88 e Å−3 |
215 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ir1 | 0.36783 (6) | 0.62096 (6) | 0.25137 (3) | 0.02612 (17) | |
O1 | 0.3350 (11) | 0.7800 (11) | 0.1361 (5) | 0.0327 (18) | |
O2 | 0.6421 (11) | 0.4122 (11) | 0.2154 (5) | 0.0355 (19) | |
O3 | 0.1042 (10) | 0.8433 (10) | 0.2871 (5) | 0.0315 (17) | |
O4 | 0.4064 (11) | 0.4697 (11) | 0.3682 (5) | 0.0334 (18) | |
O5 | 0.5066 (10) | 0.7689 (10) | 0.2858 (5) | 0.0337 (18) | |
H5D | 0.5577 | 0.8115 | 0.2430 | 0.050* | |
H5E | 0.5997 | 0.6857 | 0.3187 | 0.050* | |
O6 | −0.0934 (12) | 0.5794 (12) | 0.2823 (6) | 0.046 (2) | |
O7 | 0.4419 (13) | 0.1349 (12) | 0.2185 (5) | 0.048 (2) | |
C1 | 0.4627 (18) | 0.7249 (17) | 0.0700 (7) | 0.035 (3) | |
C2 | 0.402 (2) | 0.8478 (19) | −0.0103 (7) | 0.047 (3) | |
H2A | 0.3312 | 0.8038 | −0.0347 | 0.070* | |
H2B | 0.5167 | 0.8398 | −0.0483 | 0.070* | |
H2C | 0.3172 | 0.9801 | −0.0006 | 0.070* | |
C3 | 0.6452 (19) | 0.5594 (18) | 0.0726 (8) | 0.046 (3) | |
H3 | 0.7256 | 0.5384 | 0.0212 | 0.055* | |
C4 | 0.7252 (17) | 0.4194 (15) | 0.1418 (8) | 0.034 (3) | |
C5 | 0.9347 (19) | 0.256 (2) | 0.1293 (9) | 0.055 (4) | |
H5A | 0.9385 | 0.1353 | 0.1578 | 0.083* | |
H5B | 1.0224 | 0.2819 | 0.1519 | 0.083* | |
H5C | 0.9756 | 0.2480 | 0.0701 | 0.083* | |
C6 | 0.2844 (19) | 0.5342 (18) | 0.4321 (7) | 0.040 (3) | |
C7 | 0.334 (2) | 0.402 (2) | 0.5146 (8) | 0.055 (4) | |
H7A | 0.2550 | 0.3352 | 0.5289 | 0.083* | |
H7B | 0.3074 | 0.4781 | 0.5582 | 0.083* | |
H7C | 0.4718 | 0.3091 | 0.5092 | 0.083* | |
C8 | 0.1094 (19) | 0.7063 (19) | 0.4332 (8) | 0.044 (3) | |
H8 | 0.0380 | 0.7318 | 0.4860 | 0.052* | |
C9 | 0.0265 (18) | 0.8459 (17) | 0.3658 (7) | 0.036 (3) | |
C10 | −0.1719 (19) | 1.0193 (19) | 0.3801 (8) | 0.054 (4) | |
H10A | −0.1759 | 1.1296 | 0.3405 | 0.080* | |
H10B | −0.1923 | 1.0475 | 0.4365 | 0.080* | |
H10C | −0.2742 | 0.9916 | 0.3725 | 0.080* | |
C11 | 0.2348 (16) | 0.4738 (15) | 0.2148 (8) | 0.034 (3) | |
H11 | 0.2784 | 0.4669 | 0.1544 | 0.041* | |
C12 | 0.0184 (17) | 0.5990 (16) | 0.2220 (8) | 0.033 (3) | |
C13 | −0.0656 (19) | 0.7536 (19) | 0.1483 (8) | 0.051 (3) | |
H13A | −0.0591 | 0.6933 | 0.1022 | 0.076* | |
H13B | 0.0101 | 0.8241 | 0.1309 | 0.076* | |
H13C | −0.2009 | 0.8417 | 0.1649 | 0.076* | |
C14 | 0.3079 (17) | 0.2716 (16) | 0.2559 (7) | 0.030 (2) | |
C15 | 0.226 (2) | 0.2179 (18) | 0.3450 (8) | 0.046 (3) | |
H15A | 0.3341 | 0.1330 | 0.3776 | 0.070* | |
H15B | 0.1511 | 0.1529 | 0.3428 | 0.070* | |
H15C | 0.1427 | 0.3337 | 0.3707 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1 | 0.0211 (2) | 0.0223 (2) | 0.0273 (2) | −0.00479 (17) | −0.00288 (16) | −0.00175 (15) |
O1 | 0.028 (4) | 0.031 (4) | 0.035 (4) | −0.012 (4) | 0.001 (4) | −0.007 (4) |
O2 | 0.030 (4) | 0.030 (4) | 0.039 (5) | −0.008 (4) | 0.000 (4) | −0.006 (4) |
O3 | 0.025 (4) | 0.027 (4) | 0.032 (4) | −0.002 (3) | −0.007 (3) | −0.007 (3) |
O4 | 0.033 (4) | 0.041 (5) | 0.024 (4) | −0.017 (4) | −0.004 (3) | 0.003 (3) |
O5 | 0.021 (4) | 0.032 (4) | 0.038 (4) | −0.008 (3) | −0.006 (3) | 0.003 (4) |
O6 | 0.026 (5) | 0.044 (5) | 0.058 (6) | −0.010 (4) | −0.005 (4) | 0.000 (4) |
O7 | 0.056 (6) | 0.028 (4) | 0.048 (5) | −0.011 (4) | 0.009 (4) | −0.016 (4) |
C1 | 0.045 (7) | 0.039 (7) | 0.024 (6) | −0.021 (6) | −0.007 (5) | −0.003 (5) |
C2 | 0.059 (9) | 0.051 (8) | 0.030 (7) | −0.028 (7) | −0.018 (6) | 0.011 (6) |
C3 | 0.052 (8) | 0.043 (8) | 0.029 (7) | −0.012 (7) | −0.003 (6) | −0.004 (6) |
C4 | 0.030 (6) | 0.020 (5) | 0.049 (7) | −0.009 (5) | 0.004 (6) | −0.015 (5) |
C5 | 0.039 (8) | 0.054 (9) | 0.060 (9) | −0.010 (7) | 0.011 (7) | −0.029 (7) |
C6 | 0.046 (8) | 0.048 (8) | 0.029 (6) | −0.029 (7) | 0.002 (6) | 0.002 (6) |
C7 | 0.054 (9) | 0.078 (11) | 0.039 (7) | −0.036 (8) | −0.011 (7) | 0.002 (7) |
C8 | 0.044 (8) | 0.055 (8) | 0.031 (7) | −0.023 (7) | 0.009 (6) | −0.016 (6) |
C9 | 0.039 (7) | 0.033 (7) | 0.036 (7) | −0.017 (6) | 0.003 (6) | −0.012 (5) |
C10 | 0.038 (8) | 0.049 (8) | 0.043 (8) | 0.001 (7) | −0.001 (6) | −0.005 (7) |
C11 | 0.021 (6) | 0.022 (6) | 0.050 (7) | −0.002 (5) | −0.005 (5) | −0.003 (5) |
C12 | 0.030 (6) | 0.026 (6) | 0.043 (7) | −0.010 (5) | −0.011 (6) | −0.009 (5) |
C13 | 0.043 (8) | 0.047 (8) | 0.049 (8) | −0.015 (7) | −0.006 (6) | 0.003 (6) |
C14 | 0.038 (7) | 0.030 (6) | 0.032 (6) | −0.021 (5) | −0.009 (5) | −0.006 (5) |
C15 | 0.058 (9) | 0.041 (7) | 0.042 (7) | −0.024 (7) | −0.003 (6) | −0.005 (6) |
Ir1—O1 | 2.015 (8) | C5—H5C | 0.9600 |
Ir1—O4 | 2.017 (7) | C6—C8 | 1.384 (17) |
Ir1—O3 | 2.026 (7) | C6—C7 | 1.508 (16) |
Ir1—O2 | 2.029 (7) | C7—H7A | 0.9600 |
Ir1—C11 | 2.131 (11) | C7—H7B | 0.9600 |
Ir1—O5 | 2.155 (7) | C7—H7C | 0.9600 |
O1—C1 | 1.297 (13) | C8—C9 | 1.388 (17) |
O2—C4 | 1.245 (13) | C8—H8 | 0.9300 |
O3—C9 | 1.302 (13) | C9—C10 | 1.504 (16) |
O4—C6 | 1.266 (13) | C10—H10A | 0.9600 |
O5—H5D | 0.8200 | C10—H10B | 0.9600 |
O5—H5E | 0.8900 | C10—H10C | 0.9600 |
O6—C12 | 1.208 (13) | C11—C14 | 1.468 (14) |
O7—C14 | 1.252 (13) | C11—C12 | 1.477 (15) |
C1—C3 | 1.391 (16) | C11—H11 | 0.9800 |
C1—C2 | 1.468 (15) | C12—C13 | 1.513 (16) |
C2—H2A | 0.9600 | C13—H13A | 0.9600 |
C2—H2B | 0.9600 | C13—H13B | 0.9600 |
C2—H2C | 0.9600 | C13—H13C | 0.9600 |
C3—C4 | 1.406 (16) | C14—C15 | 1.520 (15) |
C3—H3 | 0.9300 | C15—H15A | 0.9600 |
C4—C5 | 1.518 (16) | C15—H15B | 0.9600 |
C5—H5A | 0.9600 | C15—H15C | 0.9600 |
C5—H5B | 0.9600 | ||
O1—Ir1—O4 | 177.1 (3) | O4—C6—C7 | 115.2 (11) |
O1—Ir1—O3 | 84.6 (3) | C8—C6—C7 | 117.6 (11) |
O4—Ir1—O3 | 95.1 (3) | C6—C7—H7A | 109.5 |
O1—Ir1—O2 | 94.2 (3) | C6—C7—H7B | 109.5 |
O4—Ir1—O2 | 85.9 (3) | H7A—C7—H7B | 109.5 |
O3—Ir1—O2 | 175.4 (3) | C6—C7—H7C | 109.5 |
O1—Ir1—C11 | 87.6 (4) | H7A—C7—H7C | 109.5 |
O4—Ir1—C11 | 95.3 (4) | H7B—C7—H7C | 109.5 |
O3—Ir1—C11 | 93.5 (4) | C6—C8—C9 | 128.5 (11) |
O2—Ir1—C11 | 90.9 (4) | C6—C8—H8 | 115.7 |
O1—Ir1—O5 | 91.6 (3) | C9—C8—H8 | 115.7 |
O4—Ir1—O5 | 85.5 (3) | O3—C9—C8 | 126.0 (11) |
O3—Ir1—O5 | 87.3 (3) | O3—C9—C10 | 113.8 (10) |
O2—Ir1—O5 | 88.2 (3) | C8—C9—C10 | 120.2 (11) |
C11—Ir1—O5 | 178.8 (4) | C9—C10—H10A | 109.5 |
C1—O1—Ir1 | 123.5 (7) | C9—C10—H10B | 109.5 |
C4—O2—Ir1 | 122.2 (7) | H10A—C10—H10B | 109.5 |
C9—O3—Ir1 | 121.2 (7) | C9—C10—H10C | 109.5 |
C6—O4—Ir1 | 121.9 (8) | H10A—C10—H10C | 109.5 |
Ir1—O5—H5D | 109.5 | H10B—C10—H10C | 109.5 |
Ir1—O5—H5E | 109.5 | C14—C11—C12 | 117.6 (10) |
H5D—O5—H5E | 109.2 | C14—C11—Ir1 | 112.4 (8) |
O1—C1—C3 | 123.7 (10) | C12—C11—Ir1 | 108.4 (7) |
O1—C1—C2 | 115.6 (11) | C14—C11—H11 | 105.8 |
C3—C1—C2 | 120.7 (11) | C12—C11—H11 | 105.8 |
C1—C2—H2A | 109.5 | Ir1—C11—H11 | 105.8 |
C1—C2—H2B | 109.5 | O6—C12—C11 | 123.2 (11) |
H2A—C2—H2B | 109.5 | O6—C12—C13 | 119.2 (11) |
C1—C2—H2C | 109.5 | C11—C12—C13 | 117.6 (11) |
H2A—C2—H2C | 109.5 | C12—C13—H13A | 109.5 |
H2B—C2—H2C | 109.5 | C12—C13—H13B | 109.5 |
C1—C3—C4 | 129.1 (11) | H13A—C13—H13B | 109.5 |
C1—C3—H3 | 115.5 | C12—C13—H13C | 109.5 |
C4—C3—H3 | 115.5 | H13A—C13—H13C | 109.5 |
O2—C4—C3 | 126.9 (11) | H13B—C13—H13C | 109.5 |
O2—C4—C5 | 114.0 (11) | O7—C14—C11 | 120.8 (10) |
C3—C4—C5 | 119.1 (11) | O7—C14—C15 | 117.0 (10) |
C4—C5—H5A | 109.5 | C11—C14—C15 | 122.2 (10) |
C4—C5—H5B | 109.5 | C14—C15—H15A | 109.5 |
H5A—C5—H5B | 109.5 | C14—C15—H15B | 109.5 |
C4—C5—H5C | 109.5 | H15A—C15—H15B | 109.5 |
H5A—C5—H5C | 109.5 | C14—C15—H15C | 109.5 |
H5B—C5—H5C | 109.5 | H15A—C15—H15C | 109.5 |
O4—C6—C8 | 127.1 (11) | H15B—C15—H15C | 109.5 |
O4—Ir1—O1—C1 | 96 (6) | C1—C3—C4—C5 | −176.5 (12) |
O3—Ir1—O1—C1 | −179.7 (9) | Ir1—O4—C6—C8 | 2.3 (17) |
O2—Ir1—O1—C1 | 4.8 (9) | Ir1—O4—C6—C7 | 179.4 (8) |
C11—Ir1—O1—C1 | −85.9 (9) | O4—C6—C8—C9 | 1 (2) |
O5—Ir1—O1—C1 | 93.2 (9) | C7—C6—C8—C9 | −176.4 (13) |
O1—Ir1—O2—C4 | 0.1 (9) | Ir1—O3—C9—C8 | 1.1 (16) |
O4—Ir1—O2—C4 | −177.0 (9) | Ir1—O3—C9—C10 | −178.4 (8) |
O3—Ir1—O2—C4 | −76 (4) | C6—C8—C9—O3 | −3 (2) |
C11—Ir1—O2—C4 | 87.7 (9) | C6—C8—C9—C10 | 176.9 (13) |
O5—Ir1—O2—C4 | −91.4 (9) | O1—Ir1—C11—C14 | 149.4 (8) |
O1—Ir1—O3—C9 | −176.0 (8) | O4—Ir1—C11—C14 | −30.7 (8) |
O4—Ir1—O3—C9 | 1.1 (8) | O3—Ir1—C11—C14 | −126.1 (8) |
O2—Ir1—O3—C9 | −100 (4) | O2—Ir1—C11—C14 | 55.2 (8) |
C11—Ir1—O3—C9 | 96.8 (9) | O5—Ir1—C11—C14 | 101 (17) |
O5—Ir1—O3—C9 | −84.1 (8) | O1—Ir1—C11—C12 | −78.8 (8) |
O1—Ir1—O4—C6 | 81 (6) | O4—Ir1—C11—C12 | 101.0 (8) |
O3—Ir1—O4—C6 | −2.7 (9) | O3—Ir1—C11—C12 | 5.6 (8) |
O2—Ir1—O4—C6 | 172.7 (9) | O2—Ir1—C11—C12 | −173.0 (8) |
C11—Ir1—O4—C6 | −96.8 (9) | O5—Ir1—C11—C12 | −127 (16) |
O5—Ir1—O4—C6 | 84.2 (9) | C14—C11—C12—O6 | 30.9 (17) |
Ir1—O1—C1—C3 | −6.4 (16) | Ir1—C11—C12—O6 | −98.0 (11) |
Ir1—O1—C1—C2 | 172.5 (8) | C14—C11—C12—C13 | −146.7 (11) |
O1—C1—C3—C4 | 2 (2) | Ir1—C11—C12—C13 | 84.4 (11) |
C2—C1—C3—C4 | −176.5 (13) | C12—C11—C14—O7 | 135.2 (12) |
Ir1—O2—C4—C3 | −3.7 (17) | Ir1—C11—C14—O7 | −97.9 (11) |
Ir1—O2—C4—C5 | 176.3 (7) | C12—C11—C14—C15 | −45.0 (16) |
C1—C3—C4—O2 | 3 (2) | Ir1—C11—C14—C15 | 82.0 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5D···O7i | 0.82 | 2.24 | 2.706 (11) | 116 |
O5—H5E···O6ii | 0.89 | 2.11 | 2.715 (11) | 125 |
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Ir(C5H7O2)3(H2O)] |
Mr | 507.54 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.7853 (13), 7.9461 (13), 16.362 (3) |
α, β, γ (°) | 77.295 (2), 77.927 (2), 60.918 (1) |
V (Å3) | 856.7 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 7.82 |
Crystal size (mm) | 0.15 × 0.13 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.387, 0.539 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7435, 3900, 2885 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.127, 1.03 |
No. of reflections | 3900 |
No. of parameters | 215 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.37, −1.88 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Ir1—O1 | 2.015 (8) | Ir1—O2 | 2.029 (7) |
Ir1—O4 | 2.017 (7) | Ir1—C11 | 2.131 (11) |
Ir1—O3 | 2.026 (7) | Ir1—O5 | 2.155 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5D···O7i | 0.82 | 2.24 | 2.706 (11) | 116.3 |
O5—H5E···O6ii | 0.89 | 2.11 | 2.715 (11) | 124.8 |
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z. |
Acknowledgements
This work was financially supported by Yunnan Provincial Science and Technology Department of the People's Republic of China (grant Nos. 2008IA008 and 2008CF002)
References
Bennett, M. A. & Mitchell, T. R. B. (1976). Inorg. Chem. 15, 2936–2938. CrossRef CAS Web of Science Google Scholar
Bhalla, G., Oxgaard, J., Goddard, W. A. & Periana, R. A. (2005). Organometallics, 24, 5499–5502. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449. CrossRef CAS PubMed Web of Science Google Scholar
Gibson, D. (1969). Coord. Chem. Rev. 4, 225–240. CrossRef CAS Web of Science Google Scholar
Isakova, V. G., Baidina, I. A., Morozova, N. B., Igumenov, I. K. & Rybakov, V. B. (1999). J. Struct. Chem. 40, 276–283. Web of Science CrossRef CAS Google Scholar
Matsumoto, T., Taube, D. J., Periana, R. A., Tanbe, H. & Yoshida, H. (2000). J. Am. Chem. Soc. 122, 7414–7415. Web of Science CSD CrossRef CAS Google Scholar
Periana, R. A., Liu, X. Y. & Bhalla, G. (2002). Chem. Commun. pp. 3000–3001. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wong-Foy, A. G., Bhalla, G., Liu, X. Y. & Periana, R. A. (2003). J. Am. Chem. Soc. 125, 14292–14293. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
[Ir(acac-O, O)2(acac-C3)(H2O)], as a novel, themally stable, homogeneous bis-acac-O, O—Ir(III) complex catalyst for the anti-Markovnikov, hydroarylation of olefins, has attracted considerable attention (Periana et al., 2002, Wong-Foy et al. 2003, Bhalla et al., 2005). Bennett et al. obtained [Ir(µ-acac-O,O,C3)(acac-O, O)(acac-C3)] and an unknown yellow solid as byproducts in the course of an attempt to improve the synthesis of Ir(acac)3 (Bennett & Mitchell, 1976). However, they were unable to purify the yellow solid or characterize its structure. Recently Periana et al. successfully isolated this yellow product in pure form and proved it to be [Ir(acac-O, O)2(acac-C3)(H2O)] by spectroscopic data(Periana et al., 2002). Despite the thermal and oxidative stability of octahedral iridium (III)-carbon σ -bonded complexes, there are little well characterized γ-C-bonded β-diketone complexes of iridium (III) except [Ir(µ-acac-O,O,C3)(acac-O, O)(acac-C3)] (Gibson, 1969, Matsumoto et al., 2000).
Recently the single-crystal of the compound was obtained in our laboratory and we report its crystallographic structure. In the complex, the central Ir atom is coordinated by a octahedron of four oxygen atoms of two acetylacetone ligands, one carbon atom of one acetylacetone ligand and one oxygen atom of water molcule. The average Ir—O bond length of two acetylacetone ligands is 2.02 Å, which agree with the literature data of Ir(acac)3 (Isakova et al., 1999), however, Ir—O bond length of coordinated water is 2.15 Å, which is longer than the former, whereas Ir—C bond length is found to be 2.13 Å. Intermolecular C—H···O hydrogen bond (Desiraju, 1996) and C—H···C hydrogen bond are present in the structure; while the C···O distances are within the range of 3.039 (9)–3.486 (10) Å, C—H···O are found to be within the range of 110–168°. The compound forms a hydrogen-bonded chain in which the O5 water uses two H atom to serve as a donor to the O atoms of adjacent molecules, these weaker interactions giving rise to a three-dimensional framework structure.