metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acetyl­acetonato-κ2O,O′)­aqua­(di­acetyl­methanido-κC)iridium(III)

aChemistry Laboratory, Kunming Institute of Precious Metals, Kunming, People's Republic of China, and bDepartment of Chemistry, Yunnan University, Kunming, People's Republic of China
*Correspondence e-mail: liuweiping0917@126.com

(Received 8 May 2009; accepted 17 September 2009; online 30 September 2009)

In the crystal structure of the title compound, [Ir(C5H7O2)3(H2O)], the IrIII atom is six-coordinated and situated in a slightly distorted octa­hedral environment. The complex contains both Ir—O and Ir—C bonds and was isolated from a reaction mixture of IrCl3(H2O)x, pentane-2,5-dione and NaHCO3. O—H⋯O hydrogen bonding between the water molecules and the carbonyl O atoms of adjacent molecules leads to a layered motif extending parallel to (010).

Related literature

For background to the title compound, see: Bennett & Mitchell (1976[Bennett, M. A. & Mitchell, T. R. B. (1976). Inorg. Chem. 15, 2936-2938.]); Bhalla et al. (2005[Bhalla, G., Oxgaard, J., Goddard, W. A. & Periana, R. A. (2005). Organometallics, 24, 5499-5502.]); Gibson (1969[Gibson, D. (1969). Coord. Chem. Rev. 4, 225-240.]); Matsumoto et al. (2000[Matsumoto, T., Taube, D. J., Periana, R. A., Tanbe, H. & Yoshida, H. (2000). J. Am. Chem. Soc. 122, 7414-7415.]); Periana et al. (2002[Periana, R. A., Liu, X. Y. & Bhalla, G. (2002). Chem. Commun. pp. 3000-3001.]); Wong-Foy et al. (2003[Wong-Foy, A. G., Bhalla, G., Liu, X. Y. & Periana, R. A. (2003). J. Am. Chem. Soc. 125, 14292-14293.]). For a related structure, see: Isakova et al. (1999[Isakova, V. G., Baidina, I. A., Morozova, N. B., Igumenov, I. K. & Rybakov, V. B. (1999). J. Struct. Chem. 40, 276-283.]); For background on hydrogen bonding, see: Desiraju (1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C5H7O2)3(H2O)]

  • Mr = 507.54

  • Triclinic, [P \overline 1]

  • a = 7.7853 (13) Å

  • b = 7.9461 (13) Å

  • c = 16.362 (3) Å

  • α = 77.295 (2)°

  • β = 77.927 (2)°

  • γ = 60.918 (1)°

  • V = 856.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.82 mm−1

  • T = 293 K

  • 0.15 × 0.13 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.387, Tmax = 0.539

  • 7435 measured reflections

  • 3900 independent reflections

  • 2885 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.127

  • S = 1.03

  • 3900 reflections

  • 215 parameters

  • H-atom parameters constrained

  • Δρmax = 2.37 e Å−3

  • Δρmin = −1.88 e Å−3

Table 1
Selected bond lengths (Å)

Ir1—O1 2.015 (8)
Ir1—O4 2.017 (7)
Ir1—O3 2.026 (7)
Ir1—O2 2.029 (7)
Ir1—C11 2.131 (11)
Ir1—O5 2.155 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5D⋯O7i 0.82 2.24 2.706 (11) 116
O5—H5E⋯O6ii 0.89 2.11 2.715 (11) 125
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

[Ir(acac-O, O)2(acac-C3)(H2O)], as a novel, themally stable, homogeneous bis-acac-O, O—Ir(III) complex catalyst for the anti-Markovnikov, hydroarylation of olefins, has attracted considerable attention (Periana et al., 2002, Wong-Foy et al. 2003, Bhalla et al., 2005). Bennett et al. obtained [Ir(µ-acac-O,O,C3)(acac-O, O)(acac-C3)] and an unknown yellow solid as byproducts in the course of an attempt to improve the synthesis of Ir(acac)3 (Bennett & Mitchell, 1976). However, they were unable to purify the yellow solid or characterize its structure. Recently Periana et al. successfully isolated this yellow product in pure form and proved it to be [Ir(acac-O, O)2(acac-C3)(H2O)] by spectroscopic data(Periana et al., 2002). Despite the thermal and oxidative stability of octahedral iridium (III)-carbon σ -bonded complexes, there are little well characterized γ-C-bonded β-diketone complexes of iridium (III) except [Ir(µ-acac-O,O,C3)(acac-O, O)(acac-C3)] (Gibson, 1969, Matsumoto et al., 2000).

Recently the single-crystal of the compound was obtained in our laboratory and we report its crystallographic structure. In the complex, the central Ir atom is coordinated by a octahedron of four oxygen atoms of two acetylacetone ligands, one carbon atom of one acetylacetone ligand and one oxygen atom of water molcule. The average Ir—O bond length of two acetylacetone ligands is 2.02 Å, which agree with the literature data of Ir(acac)3 (Isakova et al., 1999), however, Ir—O bond length of coordinated water is 2.15 Å, which is longer than the former, whereas Ir—C bond length is found to be 2.13 Å. Intermolecular C—H···O hydrogen bond (Desiraju, 1996) and C—H···C hydrogen bond are present in the structure; while the C···O distances are within the range of 3.039 (9)–3.486 (10) Å, C—H···O are found to be within the range of 110–168°. The compound forms a hydrogen-bonded chain in which the O5 water uses two H atom to serve as a donor to the O atoms of adjacent molecules, these weaker interactions giving rise to a three-dimensional framework structure.

Related literature top

For background on the title compound, see: Bennett & Mitchell (1976); Bhalla et al. (2005); Gibson (1969); Matsumoto et al. (2000); Periana et al. (2002); Wong-Foy et al. (2003). For a related structure, see: Isakova et al. (1999); For background on hydrogen bonding, see: Desiraju (1996). Please check added text.t

Experimental top

The complex was synthesized according literature (see Periana et al., 2002). In a round-bottom flask equipped with a reflux condenser vented to an oil bubble, 5 g of IrCl3 (H2O)x (54.34% of Ir, 14.13 mmol), 50 ml of 2, 5-pentadione (48.75 mmol) and 5 g of NaHCO3(59.5 mmol) were added. The mixture was heated to gentle reflux with stirring for 48 h. During this time, a yellow solid precipitated. The reaction mixture was cooled to room temperature and the solid was collected as crude product. The yellow solid was dissolved in 200 ml H2O at room temperature under vigorous stirring and was filtered. Solution was concentrated under vacuo to give 3.15 g (43.6%) complex as yellow microcrystalline. The compound was crystallized from water to obtain crystals suitable for X-ray structure analysis. 1HNMR (CD3OD,p.p.m.):5.54(s, 2H, CH), 5.49(s, 1H, CH), 1.96(s, 12H, CH3), 1.83(s, 6H, CH3). 13CNMR (dmso,p.p.m.): 208.4(s, C-acac, C=O), 186.1(s, O-acac, C=O), 102.6(s, O-acac, CH), 48.6(s, C-acac, CH), 31.6(s, C-acac, CH3, 26.6(s, O-acac, CH3). Anal. Calcd: Ir, 37.95; C, 35.54; H, 4.93. Found: Ir, 37.90; C, 35.48; H, 4.87.

Refinement top

All H atoms were initially located in a difference Fourier map but were positioned with idealized geometry and refined isotropic with Uiso(H)=1.2Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.93 and 0.97 Å).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the complex, with the atomic labeling scheme. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. Packing view, showing the C—H···O hydrogen-bond network between the complexes. Only the H atoms involved in H bonding are drawn. Hydrogen bonds are shown as dashed lines.
Bis(acetylacetonato-κ2O,O')aqua(diacetylmethanido- κC)iridium(III) top
Crystal data top
[Ir(C5H7O2)3(H2O)]Z = 2
Mr = 507.54F(000) = 492
Triclinic, P1Dx = 1.968 Mg m3
a = 7.7853 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9461 (13) ÅCell parameters from 1164 reflections
c = 16.362 (3) Åθ = 1.3–28.4°
α = 77.295 (2)°µ = 7.82 mm1
β = 77.927 (2)°T = 293 K
γ = 60.918 (1)°Block, orange
V = 856.7 (3) Å30.15 × 0.13 × 0.09 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3900 independent reflections
Radiation source: fine-focus sealed tube2885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 28.4°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.387, Tmax = 0.539k = 1010
7435 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0469P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3900 reflectionsΔρmax = 2.37 e Å3
215 parametersΔρmin = 1.88 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0013 (5)
Crystal data top
[Ir(C5H7O2)3(H2O)]γ = 60.918 (1)°
Mr = 507.54V = 856.7 (3) Å3
Triclinic, P1Z = 2
a = 7.7853 (13) ÅMo Kα radiation
b = 7.9461 (13) ŵ = 7.82 mm1
c = 16.362 (3) ÅT = 293 K
α = 77.295 (2)°0.15 × 0.13 × 0.09 mm
β = 77.927 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3900 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2885 reflections with I > 2σ(I)
Tmin = 0.387, Tmax = 0.539Rint = 0.061
7435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 2.37 e Å3
3900 reflectionsΔρmin = 1.88 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.36783 (6)0.62096 (6)0.25137 (3)0.02612 (17)
O10.3350 (11)0.7800 (11)0.1361 (5)0.0327 (18)
O20.6421 (11)0.4122 (11)0.2154 (5)0.0355 (19)
O30.1042 (10)0.8433 (10)0.2871 (5)0.0315 (17)
O40.4064 (11)0.4697 (11)0.3682 (5)0.0334 (18)
O50.5066 (10)0.7689 (10)0.2858 (5)0.0337 (18)
H5D0.55770.81150.24300.050*
H5E0.59970.68570.31870.050*
O60.0934 (12)0.5794 (12)0.2823 (6)0.046 (2)
O70.4419 (13)0.1349 (12)0.2185 (5)0.048 (2)
C10.4627 (18)0.7249 (17)0.0700 (7)0.035 (3)
C20.402 (2)0.8478 (19)0.0103 (7)0.047 (3)
H2A0.33120.80380.03470.070*
H2B0.51670.83980.04830.070*
H2C0.31720.98010.00060.070*
C30.6452 (19)0.5594 (18)0.0726 (8)0.046 (3)
H30.72560.53840.02120.055*
C40.7252 (17)0.4194 (15)0.1418 (8)0.034 (3)
C50.9347 (19)0.256 (2)0.1293 (9)0.055 (4)
H5A0.93850.13530.15780.083*
H5B1.02240.28190.15190.083*
H5C0.97560.24800.07010.083*
C60.2844 (19)0.5342 (18)0.4321 (7)0.040 (3)
C70.334 (2)0.402 (2)0.5146 (8)0.055 (4)
H7A0.25500.33520.52890.083*
H7B0.30740.47810.55820.083*
H7C0.47180.30910.50920.083*
C80.1094 (19)0.7063 (19)0.4332 (8)0.044 (3)
H80.03800.73180.48600.052*
C90.0265 (18)0.8459 (17)0.3658 (7)0.036 (3)
C100.1719 (19)1.0193 (19)0.3801 (8)0.054 (4)
H10A0.17591.12960.34050.080*
H10B0.19231.04750.43650.080*
H10C0.27420.99160.37250.080*
C110.2348 (16)0.4738 (15)0.2148 (8)0.034 (3)
H110.27840.46690.15440.041*
C120.0184 (17)0.5990 (16)0.2220 (8)0.033 (3)
C130.0656 (19)0.7536 (19)0.1483 (8)0.051 (3)
H13A0.05910.69330.10220.076*
H13B0.01010.82410.13090.076*
H13C0.20090.84170.16490.076*
C140.3079 (17)0.2716 (16)0.2559 (7)0.030 (2)
C150.226 (2)0.2179 (18)0.3450 (8)0.046 (3)
H15A0.33410.13300.37760.070*
H15B0.15110.15290.34280.070*
H15C0.14270.33370.37070.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.0211 (2)0.0223 (2)0.0273 (2)0.00479 (17)0.00288 (16)0.00175 (15)
O10.028 (4)0.031 (4)0.035 (4)0.012 (4)0.001 (4)0.007 (4)
O20.030 (4)0.030 (4)0.039 (5)0.008 (4)0.000 (4)0.006 (4)
O30.025 (4)0.027 (4)0.032 (4)0.002 (3)0.007 (3)0.007 (3)
O40.033 (4)0.041 (5)0.024 (4)0.017 (4)0.004 (3)0.003 (3)
O50.021 (4)0.032 (4)0.038 (4)0.008 (3)0.006 (3)0.003 (4)
O60.026 (5)0.044 (5)0.058 (6)0.010 (4)0.005 (4)0.000 (4)
O70.056 (6)0.028 (4)0.048 (5)0.011 (4)0.009 (4)0.016 (4)
C10.045 (7)0.039 (7)0.024 (6)0.021 (6)0.007 (5)0.003 (5)
C20.059 (9)0.051 (8)0.030 (7)0.028 (7)0.018 (6)0.011 (6)
C30.052 (8)0.043 (8)0.029 (7)0.012 (7)0.003 (6)0.004 (6)
C40.030 (6)0.020 (5)0.049 (7)0.009 (5)0.004 (6)0.015 (5)
C50.039 (8)0.054 (9)0.060 (9)0.010 (7)0.011 (7)0.029 (7)
C60.046 (8)0.048 (8)0.029 (6)0.029 (7)0.002 (6)0.002 (6)
C70.054 (9)0.078 (11)0.039 (7)0.036 (8)0.011 (7)0.002 (7)
C80.044 (8)0.055 (8)0.031 (7)0.023 (7)0.009 (6)0.016 (6)
C90.039 (7)0.033 (7)0.036 (7)0.017 (6)0.003 (6)0.012 (5)
C100.038 (8)0.049 (8)0.043 (8)0.001 (7)0.001 (6)0.005 (7)
C110.021 (6)0.022 (6)0.050 (7)0.002 (5)0.005 (5)0.003 (5)
C120.030 (6)0.026 (6)0.043 (7)0.010 (5)0.011 (6)0.009 (5)
C130.043 (8)0.047 (8)0.049 (8)0.015 (7)0.006 (6)0.003 (6)
C140.038 (7)0.030 (6)0.032 (6)0.021 (5)0.009 (5)0.006 (5)
C150.058 (9)0.041 (7)0.042 (7)0.024 (7)0.003 (6)0.005 (6)
Geometric parameters (Å, º) top
Ir1—O12.015 (8)C5—H5C0.9600
Ir1—O42.017 (7)C6—C81.384 (17)
Ir1—O32.026 (7)C6—C71.508 (16)
Ir1—O22.029 (7)C7—H7A0.9600
Ir1—C112.131 (11)C7—H7B0.9600
Ir1—O52.155 (7)C7—H7C0.9600
O1—C11.297 (13)C8—C91.388 (17)
O2—C41.245 (13)C8—H80.9300
O3—C91.302 (13)C9—C101.504 (16)
O4—C61.266 (13)C10—H10A0.9600
O5—H5D0.8200C10—H10B0.9600
O5—H5E0.8900C10—H10C0.9600
O6—C121.208 (13)C11—C141.468 (14)
O7—C141.252 (13)C11—C121.477 (15)
C1—C31.391 (16)C11—H110.9800
C1—C21.468 (15)C12—C131.513 (16)
C2—H2A0.9600C13—H13A0.9600
C2—H2B0.9600C13—H13B0.9600
C2—H2C0.9600C13—H13C0.9600
C3—C41.406 (16)C14—C151.520 (15)
C3—H30.9300C15—H15A0.9600
C4—C51.518 (16)C15—H15B0.9600
C5—H5A0.9600C15—H15C0.9600
C5—H5B0.9600
O1—Ir1—O4177.1 (3)O4—C6—C7115.2 (11)
O1—Ir1—O384.6 (3)C8—C6—C7117.6 (11)
O4—Ir1—O395.1 (3)C6—C7—H7A109.5
O1—Ir1—O294.2 (3)C6—C7—H7B109.5
O4—Ir1—O285.9 (3)H7A—C7—H7B109.5
O3—Ir1—O2175.4 (3)C6—C7—H7C109.5
O1—Ir1—C1187.6 (4)H7A—C7—H7C109.5
O4—Ir1—C1195.3 (4)H7B—C7—H7C109.5
O3—Ir1—C1193.5 (4)C6—C8—C9128.5 (11)
O2—Ir1—C1190.9 (4)C6—C8—H8115.7
O1—Ir1—O591.6 (3)C9—C8—H8115.7
O4—Ir1—O585.5 (3)O3—C9—C8126.0 (11)
O3—Ir1—O587.3 (3)O3—C9—C10113.8 (10)
O2—Ir1—O588.2 (3)C8—C9—C10120.2 (11)
C11—Ir1—O5178.8 (4)C9—C10—H10A109.5
C1—O1—Ir1123.5 (7)C9—C10—H10B109.5
C4—O2—Ir1122.2 (7)H10A—C10—H10B109.5
C9—O3—Ir1121.2 (7)C9—C10—H10C109.5
C6—O4—Ir1121.9 (8)H10A—C10—H10C109.5
Ir1—O5—H5D109.5H10B—C10—H10C109.5
Ir1—O5—H5E109.5C14—C11—C12117.6 (10)
H5D—O5—H5E109.2C14—C11—Ir1112.4 (8)
O1—C1—C3123.7 (10)C12—C11—Ir1108.4 (7)
O1—C1—C2115.6 (11)C14—C11—H11105.8
C3—C1—C2120.7 (11)C12—C11—H11105.8
C1—C2—H2A109.5Ir1—C11—H11105.8
C1—C2—H2B109.5O6—C12—C11123.2 (11)
H2A—C2—H2B109.5O6—C12—C13119.2 (11)
C1—C2—H2C109.5C11—C12—C13117.6 (11)
H2A—C2—H2C109.5C12—C13—H13A109.5
H2B—C2—H2C109.5C12—C13—H13B109.5
C1—C3—C4129.1 (11)H13A—C13—H13B109.5
C1—C3—H3115.5C12—C13—H13C109.5
C4—C3—H3115.5H13A—C13—H13C109.5
O2—C4—C3126.9 (11)H13B—C13—H13C109.5
O2—C4—C5114.0 (11)O7—C14—C11120.8 (10)
C3—C4—C5119.1 (11)O7—C14—C15117.0 (10)
C4—C5—H5A109.5C11—C14—C15122.2 (10)
C4—C5—H5B109.5C14—C15—H15A109.5
H5A—C5—H5B109.5C14—C15—H15B109.5
C4—C5—H5C109.5H15A—C15—H15B109.5
H5A—C5—H5C109.5C14—C15—H15C109.5
H5B—C5—H5C109.5H15A—C15—H15C109.5
O4—C6—C8127.1 (11)H15B—C15—H15C109.5
O4—Ir1—O1—C196 (6)C1—C3—C4—C5176.5 (12)
O3—Ir1—O1—C1179.7 (9)Ir1—O4—C6—C82.3 (17)
O2—Ir1—O1—C14.8 (9)Ir1—O4—C6—C7179.4 (8)
C11—Ir1—O1—C185.9 (9)O4—C6—C8—C91 (2)
O5—Ir1—O1—C193.2 (9)C7—C6—C8—C9176.4 (13)
O1—Ir1—O2—C40.1 (9)Ir1—O3—C9—C81.1 (16)
O4—Ir1—O2—C4177.0 (9)Ir1—O3—C9—C10178.4 (8)
O3—Ir1—O2—C476 (4)C6—C8—C9—O33 (2)
C11—Ir1—O2—C487.7 (9)C6—C8—C9—C10176.9 (13)
O5—Ir1—O2—C491.4 (9)O1—Ir1—C11—C14149.4 (8)
O1—Ir1—O3—C9176.0 (8)O4—Ir1—C11—C1430.7 (8)
O4—Ir1—O3—C91.1 (8)O3—Ir1—C11—C14126.1 (8)
O2—Ir1—O3—C9100 (4)O2—Ir1—C11—C1455.2 (8)
C11—Ir1—O3—C996.8 (9)O5—Ir1—C11—C14101 (17)
O5—Ir1—O3—C984.1 (8)O1—Ir1—C11—C1278.8 (8)
O1—Ir1—O4—C681 (6)O4—Ir1—C11—C12101.0 (8)
O3—Ir1—O4—C62.7 (9)O3—Ir1—C11—C125.6 (8)
O2—Ir1—O4—C6172.7 (9)O2—Ir1—C11—C12173.0 (8)
C11—Ir1—O4—C696.8 (9)O5—Ir1—C11—C12127 (16)
O5—Ir1—O4—C684.2 (9)C14—C11—C12—O630.9 (17)
Ir1—O1—C1—C36.4 (16)Ir1—C11—C12—O698.0 (11)
Ir1—O1—C1—C2172.5 (8)C14—C11—C12—C13146.7 (11)
O1—C1—C3—C42 (2)Ir1—C11—C12—C1384.4 (11)
C2—C1—C3—C4176.5 (13)C12—C11—C14—O7135.2 (12)
Ir1—O2—C4—C33.7 (17)Ir1—C11—C14—O797.9 (11)
Ir1—O2—C4—C5176.3 (7)C12—C11—C14—C1545.0 (16)
C1—C3—C4—O23 (2)Ir1—C11—C14—C1582.0 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5D···O7i0.822.242.706 (11)116
O5—H5E···O6ii0.892.112.715 (11)125
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ir(C5H7O2)3(H2O)]
Mr507.54
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7853 (13), 7.9461 (13), 16.362 (3)
α, β, γ (°)77.295 (2), 77.927 (2), 60.918 (1)
V3)856.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)7.82
Crystal size (mm)0.15 × 0.13 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.387, 0.539
No. of measured, independent and
observed [I > 2σ(I)] reflections
7435, 3900, 2885
Rint0.061
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.127, 1.03
No. of reflections3900
No. of parameters215
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.37, 1.88

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ir1—O12.015 (8)Ir1—O22.029 (7)
Ir1—O42.017 (7)Ir1—C112.131 (11)
Ir1—O32.026 (7)Ir1—O52.155 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5D···O7i0.822.242.706 (11)116.3
O5—H5E···O6ii0.892.112.715 (11)124.8
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

This work was financially supported by Yunnan Provincial Science and Technology Department of the People's Republic of China (grant Nos. 2008IA008 and 2008CF002)

References

First citationBennett, M. A. & Mitchell, T. R. B. (1976). Inorg. Chem. 15, 2936–2938.  CrossRef CAS Web of Science Google Scholar
First citationBhalla, G., Oxgaard, J., Goddard, W. A. & Periana, R. A. (2005). Organometallics, 24, 5499–5502.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGibson, D. (1969). Coord. Chem. Rev. 4, 225–240.  CrossRef CAS Web of Science Google Scholar
First citationIsakova, V. G., Baidina, I. A., Morozova, N. B., Igumenov, I. K. & Rybakov, V. B. (1999). J. Struct. Chem. 40, 276–283.  Web of Science CrossRef CAS Google Scholar
First citationMatsumoto, T., Taube, D. J., Periana, R. A., Tanbe, H. & Yoshida, H. (2000). J. Am. Chem. Soc. 122, 7414–7415.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeriana, R. A., Liu, X. Y. & Bhalla, G. (2002). Chem. Commun. pp. 3000–3001.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong-Foy, A. G., Bhalla, G., Liu, X. Y. & Periana, R. A. (2003). J. Am. Chem. Soc. 125, 14292–14293.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds