organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-p-Tolyladamantane-1-carboxamide

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: nysima@126.com

(Received 1 August 2009; accepted 7 September 2009; online 12 September 2009)

In the crystal of the title compound, C18H23NO, the mol­ecules are linked into chains along the c axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For For bond-length data, see: Allen et al. (1987[Allen, F. H. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis of the title compound, see: Karle et al. (1997[Karle, I. S., Ranganathan, D. & Haridas, D. (1997). J. Am. Chem. Soc. 119, 2777-2783.]); Tadashi et al. (1969[Tadashi Sasaki, (1969). Bull. Chem. Soc. Jpn, 42, 1617-1621.])

[Scheme 1]

Experimental

Crystal data
  • C18H23NO

  • Mr = 269.37

  • Orthorhombic, P c c n

  • a = 30.708 (7) Å

  • b = 9.7927 (2) Å

  • c = 10.0203 (6) Å

  • V = 3013.2 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.50 × 0.30 × 0.30 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.964, Tmax = 0.978

  • 27405 measured reflections

  • 3443 independent reflections

  • 2652 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.174

  • S = 1.16

  • 3443 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.12 2.962 (2) 166
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The unique structure of adamantane and the pharmaccutical effects of adamantane-containing agents on virus (Davis et al., 1964) have attracted many chemists and pharmacologists to do considerable work on the syntheses of adamantane derivatives (Fort et al., 1964). The crystal structure of the title compound (I) is reported herein.

The molecular structure of compound (I), C18H23ON, is shown in Figure 1. All bond lengths and bond correspond to the geometry parameters expected for atom types and the type of hybridization (Allen et al., 1987). The bonds to nitrogen of the title amide, Fig. 1, the torsion angles of O1—C8—N1—C1 and C9—C8—N1—C1 are 1.70 (3)° and 178.59 (18)°, respectively. The C8—N1 bond has considerable double-bond characer, at 1.349 (2) Å, is substantially shorter than the normal C—N single-bond distance observed in amines. In the crystal of (I), the intermolecular N1—H···O1 H-bonds linked molecules to chains along the c axis (Fig.2). And the N1—H···O1 bond length is 2.962 (2) Å.

Related literature top

For the the pharmaceutical effects of adamantane-containing agents on viruses, see: Davis et al. (1964). for the synthesis of adamantane derivatives, see: Fort et al. (1964). For bond-length data, see: Allen et al. (1987). For the synthesis of the title compound, see: Karle et al. (1997); Tadashi et al. (1969)

Experimental top

A solution of freshly prepared 1-adamantane carbonyl chloride (1 mmol, prepared by refluxing 1-adamantane carboxylic acid with 3M excess of SOCl2) in dry CH2Cl2 was added dropwise to a well stirred and ice-cooled solution of p-toluidine (1 mmol) and triethylamine (2 mmol) in the same solvent. After 24 h of stirring at room temperature, the solvents were removed in vacuo and the residue was recrystallized from methanol. Colorless single crystals of the title compound suitable for X-ray diffraction analysis were obtained then and the yield was 80% (Isabella et al. 1997; Tadashi et al., 1969).

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
N-p-Tolyladamantane-1-carboxamide top
Crystal data top
C18H23NOF(000) = 1168
Mr = 269.37Dx = 1.188 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 4945 reflections
a = 30.708 (7) Åθ = 2.5–27.5°
b = 9.7927 (2) ŵ = 0.07 mm1
c = 10.0203 (6) ÅT = 298 K
V = 3013.2 (7) Å3Block, colourless
Z = 80.50 × 0.30 × 0.30 mm
Data collection top
Rigaku SCXmini
diffractometer
3443 independent reflections
Radiation source: fine-focus sealed tube2652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.7°
CCD Profile fitting scansh = 3939
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.964, Tmax = 0.978l = 1212
27405 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.7031P]
where P = (Fo2 + 2Fc2)/3
3443 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H23NOV = 3013.2 (7) Å3
Mr = 269.37Z = 8
Orthorhombic, PccnMo Kα radiation
a = 30.708 (7) ŵ = 0.07 mm1
b = 9.7927 (2) ÅT = 298 K
c = 10.0203 (6) Å0.50 × 0.30 × 0.30 mm
Data collection top
Rigaku SCXmini
diffractometer
3443 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2652 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.978Rint = 0.080
27405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.16Δρmax = 0.20 e Å3
3443 reflectionsΔρmin = 0.15 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41659 (6)0.06223 (19)0.01785 (19)0.0377 (4)
C20.41516 (7)0.0339 (2)0.0824 (2)0.0487 (5)
H20.39780.01950.15700.058*
C30.43961 (8)0.1518 (2)0.0718 (2)0.0531 (6)
H30.43820.21590.14010.064*
C40.46586 (7)0.1775 (2)0.0360 (2)0.0497 (5)
C50.46711 (7)0.0805 (2)0.1354 (2)0.0531 (6)
H50.48460.09520.20970.064*
C60.44298 (7)0.0383 (2)0.1273 (2)0.0485 (5)
H60.44450.10240.19560.058*
C70.49221 (9)0.3075 (3)0.0462 (3)0.0744 (8)
H7A0.51820.29030.09670.112*
H7B0.47520.37650.09010.112*
H7C0.49990.33820.04170.112*
C80.37650 (6)0.2542 (2)0.08852 (18)0.0364 (4)
C90.34923 (6)0.38031 (19)0.05641 (18)0.0351 (4)
C100.33115 (7)0.4418 (2)0.1861 (2)0.0472 (5)
H10A0.35500.46670.24460.057*
H10B0.31330.37460.23170.057*
C110.30364 (8)0.5690 (2)0.1545 (2)0.0534 (6)
H110.29230.60760.23780.064*
C120.33198 (9)0.6739 (2)0.0850 (3)0.0618 (7)
H12A0.35610.69900.14240.074*
H12B0.31510.75550.06670.074*
C130.34927 (8)0.6146 (2)0.0453 (2)0.0549 (6)
H130.36710.68310.09100.066*
C140.37712 (7)0.4883 (2)0.0142 (2)0.0446 (5)
H14A0.38880.45090.09640.053*
H14B0.40140.51400.04250.053*
C150.31066 (7)0.3420 (2)0.0341 (2)0.0437 (5)
H15A0.32140.30330.11690.052*
H15B0.29280.27370.00980.052*
C160.28321 (7)0.4687 (2)0.0641 (2)0.0535 (6)
H160.25870.44350.12170.064*
C170.31163 (8)0.5726 (3)0.1349 (2)0.0591 (6)
H17A0.29440.65230.15780.071*
H17B0.32290.53350.21690.071*
C180.26607 (8)0.5283 (3)0.0655 (3)0.0599 (6)
H18A0.24820.60760.04660.072*
H18B0.24810.46120.11080.072*
N10.39146 (6)0.18381 (17)0.01773 (15)0.0414 (4)
H10.38500.21660.09480.050*
O10.38450 (5)0.21905 (16)0.20311 (13)0.0529 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0387 (10)0.0392 (10)0.0352 (10)0.0041 (8)0.0014 (8)0.0063 (8)
C20.0507 (12)0.0489 (12)0.0466 (12)0.0075 (10)0.0105 (10)0.0025 (10)
C30.0563 (13)0.0424 (12)0.0605 (14)0.0078 (10)0.0049 (11)0.0054 (10)
C40.0426 (11)0.0435 (12)0.0630 (14)0.0054 (10)0.0001 (11)0.0114 (10)
C50.0505 (12)0.0568 (14)0.0521 (13)0.0072 (11)0.0102 (10)0.0147 (11)
C60.0549 (13)0.0503 (12)0.0401 (11)0.0064 (10)0.0073 (9)0.0032 (9)
C70.0662 (16)0.0551 (15)0.102 (2)0.0201 (13)0.0048 (16)0.0105 (15)
C80.0393 (10)0.0396 (10)0.0301 (9)0.0009 (8)0.0011 (8)0.0010 (8)
C90.0373 (10)0.0367 (10)0.0314 (9)0.0023 (8)0.0015 (8)0.0010 (8)
C100.0554 (13)0.0460 (12)0.0401 (11)0.0084 (10)0.0054 (9)0.0034 (9)
C110.0580 (13)0.0476 (13)0.0546 (13)0.0119 (11)0.0107 (11)0.0057 (10)
C120.0654 (15)0.0386 (12)0.0813 (18)0.0055 (11)0.0027 (13)0.0045 (12)
C130.0574 (13)0.0424 (12)0.0650 (15)0.0040 (10)0.0069 (12)0.0133 (11)
C140.0436 (11)0.0420 (11)0.0480 (11)0.0012 (9)0.0047 (9)0.0015 (9)
C150.0420 (11)0.0435 (11)0.0455 (11)0.0007 (9)0.0027 (9)0.0001 (9)
C160.0459 (12)0.0566 (14)0.0580 (13)0.0049 (11)0.0076 (10)0.0047 (11)
C170.0641 (15)0.0552 (14)0.0580 (14)0.0144 (12)0.0006 (12)0.0184 (12)
C180.0455 (12)0.0543 (14)0.0799 (17)0.0116 (11)0.0081 (12)0.0055 (13)
N10.0521 (10)0.0437 (9)0.0284 (8)0.0141 (8)0.0000 (7)0.0007 (7)
O10.0778 (11)0.0511 (9)0.0297 (7)0.0213 (8)0.0035 (7)0.0015 (6)
Geometric parameters (Å, º) top
C1—C21.377 (3)C10—H10B0.9700
C1—C61.383 (3)C11—C181.512 (3)
C1—N11.419 (2)C11—C121.516 (3)
C2—C31.381 (3)C11—H110.9800
C2—H20.9300C12—C131.525 (3)
C3—C41.371 (3)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.377 (3)C13—C171.520 (3)
C4—C71.512 (3)C13—C141.536 (3)
C5—C61.382 (3)C13—H130.9800
C5—H50.9300C14—H14A0.9700
C6—H60.9300C14—H14B0.9700
C7—H7A0.9600C15—C161.530 (3)
C7—H7B0.9600C15—H15A0.9700
C7—H7C0.9600C15—H15B0.9700
C8—O11.224 (2)C16—C171.517 (3)
C8—N11.349 (2)C16—C181.518 (3)
C8—C91.526 (3)C16—H160.9800
C9—C141.534 (3)C17—H17A0.9700
C9—C101.536 (3)C17—H17B0.9700
C9—C151.538 (3)C18—H18A0.9700
C10—C111.537 (3)C18—H18B0.9700
C10—H10A0.9700N1—H10.8600
C2—C1—C6118.76 (19)C11—C12—C13109.58 (19)
C2—C1—N1123.74 (17)C11—C12—H12A109.8
C6—C1—N1117.48 (18)C13—C12—H12A109.8
C1—C2—C3119.8 (2)C11—C12—H12B109.8
C1—C2—H2120.1C13—C12—H12B109.8
C3—C2—H2120.1H12A—C12—H12B108.2
C4—C3—C2122.3 (2)C17—C13—C12110.1 (2)
C4—C3—H3118.9C17—C13—C14109.01 (19)
C2—C3—H3118.9C12—C13—C14109.09 (19)
C3—C4—C5117.4 (2)C17—C13—H13109.5
C3—C4—C7121.5 (2)C12—C13—H13109.5
C5—C4—C7121.1 (2)C14—C13—H13109.5
C4—C5—C6121.6 (2)C9—C14—C13109.75 (17)
C4—C5—H5119.2C9—C14—H14A109.7
C6—C5—H5119.2C13—C14—H14A109.7
C5—C6—C1120.2 (2)C9—C14—H14B109.7
C5—C6—H6119.9C13—C14—H14B109.7
C1—C6—H6119.9H14A—C14—H14B108.2
C4—C7—H7A109.5C16—C15—C9109.99 (17)
C4—C7—H7B109.5C16—C15—H15A109.7
H7A—C7—H7B109.5C9—C15—H15A109.7
C4—C7—H7C109.5C16—C15—H15B109.7
H7A—C7—H7C109.5C9—C15—H15B109.7
H7B—C7—H7C109.5H15A—C15—H15B108.2
O1—C8—N1121.90 (18)C17—C16—C18110.0 (2)
O1—C8—C9122.38 (17)C17—C16—C15108.61 (18)
N1—C8—C9115.72 (15)C18—C16—C15109.57 (19)
C8—C9—C14110.41 (15)C17—C16—H16109.5
C8—C9—C10109.71 (15)C18—C16—H16109.5
C14—C9—C10108.77 (16)C15—C16—H16109.5
C8—C9—C15110.43 (16)C16—C17—C13110.00 (19)
C14—C9—C15109.04 (16)C16—C17—H17A109.7
C10—C9—C15108.43 (16)C13—C17—H17A109.7
C9—C10—C11110.01 (17)C16—C17—H17B109.7
C9—C10—H10A109.7C13—C17—H17B109.7
C11—C10—H10A109.7H17A—C17—H17B108.2
C9—C10—H10B109.7C11—C18—C16109.94 (19)
C11—C10—H10B109.7C11—C18—H18A109.7
H10A—C10—H10B108.2C16—C18—H18A109.7
C18—C11—C12110.2 (2)C11—C18—H18B109.7
C18—C11—C10109.11 (18)C16—C18—H18B109.7
C12—C11—C10109.15 (18)H18A—C18—H18B108.2
C18—C11—H11109.4C8—N1—C1127.93 (16)
C12—C11—H11109.4C8—N1—H1116.0
C10—C11—H11109.4C1—N1—H1116.0
C6—C1—C2—C30.4 (3)C11—C12—C13—C1461.2 (2)
N1—C1—C2—C3177.7 (2)C8—C9—C14—C13179.79 (16)
C1—C2—C3—C40.3 (4)C10—C9—C14—C1359.4 (2)
C2—C3—C4—C50.1 (4)C15—C9—C14—C1358.7 (2)
C2—C3—C4—C7179.7 (2)C17—C13—C14—C959.7 (2)
C3—C4—C5—C60.1 (4)C12—C13—C14—C960.5 (2)
C7—C4—C5—C6179.6 (2)C8—C9—C15—C16179.22 (16)
C4—C5—C6—C10.2 (3)C14—C9—C15—C1659.3 (2)
C2—C1—C6—C50.4 (3)C10—C9—C15—C1659.0 (2)
N1—C1—C6—C5177.82 (19)C9—C15—C16—C1760.4 (2)
O1—C8—C9—C14114.5 (2)C9—C15—C16—C1859.8 (2)
N1—C8—C9—C1465.3 (2)C18—C16—C17—C1358.4 (2)
O1—C8—C9—C105.4 (3)C15—C16—C17—C1361.5 (3)
N1—C8—C9—C10174.87 (17)C12—C13—C17—C1658.3 (3)
O1—C8—C9—C15124.8 (2)C14—C13—C17—C1661.3 (2)
N1—C8—C9—C1555.4 (2)C12—C11—C18—C1659.4 (2)
C8—C9—C10—C11180.00 (17)C10—C11—C18—C1660.5 (2)
C14—C9—C10—C1159.1 (2)C17—C16—C18—C1158.9 (2)
C15—C9—C10—C1159.3 (2)C15—C16—C18—C1160.4 (2)
C9—C10—C11—C1860.4 (2)O1—C8—N1—C11.7 (3)
C9—C10—C11—C1260.1 (2)C9—C8—N1—C1178.59 (18)
C18—C11—C12—C1359.0 (2)C2—C1—N1—C828.1 (3)
C10—C11—C12—C1360.8 (3)C6—C1—N1—C8153.8 (2)
C11—C12—C13—C1758.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.122.962 (2)166
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H23NO
Mr269.37
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)298
a, b, c (Å)30.708 (7), 9.7927 (2), 10.0203 (6)
V3)3013.2 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.30 × 0.30
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.964, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
27405, 3443, 2652
Rint0.080
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.174, 1.16
No. of reflections3443
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.15

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.122.962 (2)166.0
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationAllen, F. H. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationKarle, I. S., Ranganathan, D. & Haridas, D. (1997). J. Am. Chem. Soc. 119, 2777–2783.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadashi Sasaki, (1969). Bull. Chem. Soc. Jpn, 42, 1617–1621.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds