metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1233-m1234

Di­chlorido{[(di­phenyl­phosphino)meth­yl]bis­­(2-methyl­phen­yl)phosphine-κ2P,P′}palladium(II)

aDePaul University, Department of Chemistry, 1110 West Belden Avenue, Chicago, Illinois 60614, USA, and bUniversity of Illinois, School of Chemical Sciences, Box 59-1, 505 South Mathews Avenue, Urbana, Illinois 61801, USA
*Correspondence e-mail: qshelby@depaul.edu

(Received 18 August 2009; accepted 10 September 2009; online 19 September 2009)

In the title compound, [PdCl2(C27H26P2)] or PdCl2[(C6H5)2PCH2P(C6H4CH3)2], the palladium center has a distorted square-planar geometry. There are two crystallographically independent mol­ecules in the asymmetric unit. The dihedral angle between the PdP2 and PdCl2 planes is 2.95 (4)° in one independent mol­ecule and 5.15 (4)° in the other. The P—Pd—P and P—C—P bond angles are significantly distorted because of the small bite angle of the chelating (bis­phosphino)methane ligand. The steric demands of the substituted rings in the mixed ligand cause a slight elongation of the Pd—P(C6H4CH3)2 bond relative to the Pd—P(C6H5)2 bond. In one molecule the tolyl ring shows positional disorder in a 0.58 (2):0.42 (2) ratio, in the other molecule the phenyl ring shows positional disorder in a 0.838 (9):0.162 (9) ratio.

Related literature

For the steric effects of (bis­phosphino)methane ligands, see: Filby et al. (2006[Filby, M., Deeming, A. J., Hogarth, G. & Lee, M.-Y. (2006). Can. J. Chem. 84 319-329.]); Dossett et al. (2001[Dossett, S. J., Gillon, A., Orpen, A. G., Fleming, J. S., Pringle, P. G., Wass, D. F. & Jones, M. D. (2001). Chem. Commun. pp. 699-700.]). For dichlorido[bis­(diphenyl­phosphino)methane]palladium(II), see: Shahid et al. (2009[Shahid, M., Imtiaz-ud-Din, Mazhar, M., Zeller, M. & Hunter, A. D. (2009). Acta Cryst. E65, m158-m159.]); Steffen & Palenik (1976[Steffen, W. L. & Palenik, G. J. (1976). Inorg. Chem. 15, 2432-2439.]). For dichlorido[bis­(dicyclo­hexyl­phosphino)methane]palladium(II), see: Mague et al. (2007[Mague, J. T., Pool, D. H. & Fink, M. J. (2007). Acta Cryst. E63, m3083.]). For related literature regarding the synthesis of the title compound, see: Wass (2001[Wass, D. F. (2001). PCT Int. Appl. WO 2001010876 A1 20010215.]); Gauthron et al. (1998[Gauthron, I., Mugnier, Y., Hierso, K. & Harvey, P. D. (1998). New J. Chem. pp, 237-246.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C27H26P2)]

  • Mr = 589.72

  • Monoclinic, P 21 /c

  • a = 17.8761 (10) Å

  • b = 16.7568 (9) Å

  • c = 16.9407 (9) Å

  • β = 90.446 (3)°

  • V = 5074.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 193 K

  • 0.30 × 0.28 × 0.26 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: integration (SHELXTL/XPREP; Bruker, 2005[Bruker (2005). SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.] and SADABS; Bruker, 2007[Bruker (2007). SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])Tmin = 0.728, Tmax = 0.801

  • 83307 measured reflections

  • 9350 independent reflections

  • 8400 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 1.26

  • 9350 reflections

  • 702 parameters

  • 469 restraints

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯Cl1 0.98 2.63 3.612 (4) 179
C34—H34A⋯Cl3 0.98 2.66 3.637 (4) 179

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP/SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and CrystalMaker (CrystalMaker, 1994[CrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxford, England (www.CrystalMaker.com).]); software used to prepare material for publication: XCIF/SHELXTL.

Supporting information


Comment top

The steric effects on the bite angles and preferred bonding modes of aromatic (bisphosphino)methane ligands have been studied (Filby et al., 2006), and there is interest in their four-membered palladacyclic complexes because they have been shown to be active catalysts for reactions such as the copolymerization of CO and C2H4 (Dossett et al., 2001).

The title compound, PdCl2[(C6H5)2PCH2P(C6H4CH3)2], crystallizes with two independent molecules in the asymmetric unit with the palladium center in each adopting a distorted square-planar geometry. The C1 to C7 ortho-tolyl ring in molecule 1 and the C43 to C48 phenyl ring in molecule 2 are disordered. The asymmetric unit containing both molecules showing disorder of their respective aromatic rings is shown in Fig. 1. In molecule 1 (Fig. 2) the dihedral angle between the PdP2 and PdCl2 planes is 2.95 (4)°, whereas the dihedral angle is 5.15 (4)° in molecule 2 (Fig. 3). The related symmetrical compounds PdCl2[(C6H5)2PCH2P(C6H5)2] (Shahid et al., 2009; Steffen & Palenik, 1976) and PdCl2[(C6H11)2PCH2P(C6H11)2] (Mague et al., 2007) show similar deviations from planarity about the palladium center due partly to the small bite angle of the chelating (bisphosphino)methane ligand and the spatial demands of the ligand substituents. The P—Pd—P bond angles of 73.75 (3)° in molecule 1 and 73.37 (3)° in molecule 2 are significantly distorted from the normal square-planar value of 90°, and the P—C—P bond angles (93.95 (13) and 92.73 (14)°, respectively) show major deviations from the normal tetrahedral value of 109.5°. Notably, the Pd—P(C6H4CH3)2 bond lengths of 2.2646 (8) in molecule 1 and 2.2604 (8) Å in molecule 2 are slightly longer than the Pd—P(C6H5)2 bond lengths (2.2197 (7) and 2.2146 (8) Å in the respective molecules), which is likely a result of the steric requirements of the substituted rings.

There are two short Cl···H interactions: Cl1···H14A—C14 is 2.631 Å and Cl3···H34A—C34 is 2.658 Å. These are intramolecular Cl···H—C hydrogen bonds and they occur between the same atoms on both symmetrically independent molecules. The Cl···H—C angles are nearly linear (178.9° and 178.7°, respectively).

Related literature top

For studies on the steric effects of (bisphosphino)methane ligands, see: Filby et al. (2006); Dossett et al. (2001). For dichlorido[bis(diphenylphosphino)methane]palladium(II), see: Shahid et al. (2009); Steffen & Palenik (1976). For dichlorido[bis(dicyclohexylphosphino)methane]palladium(II), see: Mague et al. (2007). For related literature regarding the synthesis of the title compound, see: Wass (2001); Gauthron et al. (1998).

Experimental top

The mixed ligand Ph2PCH2P(C6H4CH3)2 has been reported in the patent literature (Wass, 2001), and our synthetic procedure will be published elsewhere. The title compound, PdCl2[(C6H5)2PCH2P(C6H4CH3)2], was prepared from a procedure adapted from that described previously for the synthesis of PdCl2[(C6H5)2PCH2P(C6H5)2] by Gauthron et al. (1998). A solid mixture of Ph2PCH2P(C6H4CH3)2 (612 mg, 1.48 mmol) and PdCl2 (260 mg, 1.47 mmol) was suspended in 50% EtOH (25 ml) and concentrated HCl (25 ml). The mixture was refluxed overnight, and a yellow solid precipitated from solution. The mixture was filtered, and the yellow solid was washed with H2O (2 × 25 ml) and EtOH (2 × 25 ml). After drying under vacuum, the title compound was obtained as a yellow powder (0.844 g, 98%). Mp: 258.1 °C (dec.). Anal. Calcd for C27H26Cl2P2Pd: C, 54.99; H, 4.44; P, 10.50. Found: C, 54.84; H, 4.33; P, 10.18. 1H NMR (CDCl3): δ 2.27 (s, CH,3), 4.30 (virtual t, 2JHP = 10.6, 9.0 Hz, CH2), 7.23–8.04 (m, C6H5 and C6H4CH3). 31P{1H} NMR (CDCl3): δ -54.1 (d, 2JPP = 88 Hz, P(C6H5)2 or P(C6H4CH3)2), -52.9 (d, 2JPP = 88 Hz, P(C6H5)2 or P(C6H4CH3)2).

Single crystals suitable for X-ray diffraction were grown from slow diffusion of pentane into a concentrated CH2Cl2 solution at room temperature.

Refinement top

The proposed structural model consisting of two independent host molecules that each exhibit disorder off of the phosphines was developed. The positional disorder present in molecule 1 (Fig. 1) is located on the ortho-tolyl ring that contains C1 to C7. The disordered ortho-tolyl rings were restrained to have similar P—C bond distances, the same geometries, and to be flat using an effective standard deviation (e.s.d.) for each restraint of 0.01 Å. The final refinement showed that the ortho-tolyl ring is located in the primary position 57.8 (20)% of the time. The disorder present in molecule 2 (Fig. 1) is located on the phenyl ring that contains C43 to C48. The disordered phenyl rings were restrained to have similar P—C bond distances, similar C—C bond distances across the ring, and to be flat using e.s.d.'s of 0.01. The final refinement showed only a slight disorder in the phenyl ring with the primary position being 83.83 (9)% occupied. Anti bumping restraints were also used to prevent close contacts between the H atoms on the P—C—P bridged carbon and the ortho H atoms on the phenyl rings. Rigid-bond restraints (e.s.d. 0.01) were imposed on displacement parameters for all disordered sites and similar displacement amplitudes (e.s.d. 0.01) were imposed on disordered sites overlapping by less than the sum of Van der Waals radii. Methyl H atom positions, R—CH3, were optimized by rotation about R—C bonds with idealized C—H, R—H and H···H distances (C—H = 0.9800 and H···H = 1.6000 Å). Remaining H atoms were included as riding idealized contributors (aromatic C-H = 0.9500 Å, and R2CH2 C-H = 0.9900 Å). Methyl H atom U's were assigned as 1.5 times Ueq of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier Ueq.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005), XPREP (Bruker, 2005) and SADABS (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and CrystalMaker (CrystalMaker, 1994); software used to prepare material for publication: XCIF (Bruker, 2005).

Figures top
[Figure 1] Fig. 1. Two independent molecular structures of the title compound in the asymmetric unit showing disorder of the ortho-tolyl ring C1 to C7 in molecule 1 (left) and the phenyl ring C43 to C48 in molecule 2 (right) with 35% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms.
[Figure 2] Fig. 2. Molecule 1 of the title compound showing 35% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms. Disorder of the ortho-tolyl ring C1 to C7 has been omitted for clarity.
[Figure 3] Fig. 3. Molecule 2 of the title compound showing 35% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms. Disorder of the phenyl ring C43 to C48 has been omitted for clarity.
Dichlorido{[(diphenylphosphino)methyl]bis(2-methylphenyl)phosphine- κ2P,P'}palladium(II) top
Crystal data top
[PdCl2(C27H26P2)]F(000) = 2384
Mr = 589.72Dx = 1.544 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9741 reflections
a = 17.8761 (10) Åθ = 2.4–27.1°
b = 16.7568 (9) ŵ = 1.08 mm1
c = 16.9407 (9) ÅT = 193 K
β = 90.446 (3)°Prism, yellow
V = 5074.4 (5) Å30.30 × 0.28 × 0.26 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
9350 independent reflections
Radiation source: fine-focus sealed tube8400 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
profile data from ϕ and ω scansθmax = 25.4°, θmin = 1.7°
Absorption correction: integration
(SHELXTL/XPREP; Bruker, 2005)
h = 2021
Tmin = 0.728, Tmax = 0.801k = 2020
83307 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0262P)2 + 5.P]
where P = (Fo2 + 2Fc2)/3
9350 reflections(Δ/σ)max = 0.006
702 parametersΔρmax = 0.66 e Å3
469 restraintsΔρmin = 0.47 e Å3
Crystal data top
[PdCl2(C27H26P2)]V = 5074.4 (5) Å3
Mr = 589.72Z = 8
Monoclinic, P21/cMo Kα radiation
a = 17.8761 (10) ŵ = 1.08 mm1
b = 16.7568 (9) ÅT = 193 K
c = 16.9407 (9) Å0.30 × 0.28 × 0.26 mm
β = 90.446 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
9350 independent reflections
Absorption correction: integration
(SHELXTL/XPREP; Bruker, 2005)
8400 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.801Rint = 0.037
83307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030469 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.26Δρmax = 0.66 e Å3
9350 reflectionsΔρmin = 0.47 e Å3
702 parameters
Special details top

Experimental. One distinct cell was identified using APEX2 (Bruker, 2004). Six frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2005) then corrected for absorption by integration using SHELXTL/XPREP V2005/2 (Bruker, 2005) before using SAINT/SADABS (Bruker, 2007) to sort, merge, and scale the combined data. No decay correction was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure was phased by direct methods (Sheldrick, 2008). Systematic conditions suggested the unambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The highest peaks in the final difference Fourier map were in the vicinity of atoms Pd2, Cl4, C48, and C54; the final map had no other significant features. A final analysis of variance between observed and calculated structure factors showed some dependence on amplitude and little dependence on resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.003487 (12)0.267501 (13)0.482122 (12)0.02435 (6)
P10.08444 (4)0.21236 (4)0.56213 (4)0.02565 (16)
P20.04231 (4)0.28693 (4)0.60477 (4)0.02460 (16)
Cl10.04979 (5)0.24648 (5)0.35578 (4)0.03729 (18)
Cl20.11120 (4)0.32869 (5)0.42864 (5)0.04003 (19)
C10.1820 (3)0.2426 (6)0.5586 (6)0.0332 (16)0.58 (2)
C20.2345 (4)0.2155 (5)0.6137 (5)0.0372 (16)0.58 (2)
C30.3084 (4)0.2406 (6)0.6049 (7)0.048 (2)0.58 (2)
H30.34560.22340.64160.058*0.58 (2)
C40.3277 (5)0.2894 (8)0.5444 (7)0.053 (2)0.58 (2)
H40.37860.30460.53920.063*0.58 (2)
C50.2770 (6)0.3175 (7)0.4908 (6)0.052 (2)0.58 (2)
H50.29180.35260.44980.063*0.58 (2)
C60.2030 (5)0.2932 (7)0.4977 (7)0.0425 (19)0.58 (2)
H60.16660.31130.46070.051*0.58 (2)
C70.2183 (4)0.1629 (5)0.6826 (5)0.0378 (18)0.58 (2)
H7A0.18110.18860.71640.057*0.58 (2)
H7B0.26440.15380.71290.057*0.58 (2)
H7C0.19870.11170.66370.057*0.58 (2)
C1B0.1795 (4)0.2485 (8)0.5497 (8)0.033 (2)0.42 (2)
C2B0.2402 (6)0.2222 (7)0.5947 (8)0.039 (2)0.42 (2)
C3B0.3100 (6)0.2564 (7)0.5810 (9)0.045 (2)0.42 (2)
H3B0.35230.23950.61100.054*0.42 (2)
C4B0.3181 (7)0.3139 (9)0.5247 (9)0.048 (2)0.42 (2)
H4B0.36630.33590.51580.057*0.42 (2)
C5B0.2591 (7)0.3407 (8)0.4811 (8)0.042 (2)0.42 (2)
H5B0.26580.38150.44290.050*0.42 (2)
C6B0.1889 (7)0.3078 (9)0.4931 (9)0.036 (2)0.42 (2)
H6B0.14730.32580.46270.043*0.42 (2)
C7B0.2347 (6)0.1602 (8)0.6572 (9)0.049 (2)0.42 (2)
H7D0.28280.15560.68500.074*0.42 (2)
H7E0.22190.10880.63310.074*0.42 (2)
H7F0.19580.17530.69480.074*0.42 (2)
C80.07714 (16)0.10450 (18)0.57255 (18)0.0312 (7)
C90.10714 (17)0.05362 (19)0.51544 (19)0.0355 (7)
C100.0951 (2)0.0281 (2)0.5250 (2)0.0457 (9)
H100.11400.06380.48640.055*
C110.0573 (2)0.0584 (2)0.5875 (3)0.0521 (10)
H110.04990.11440.59160.063*
C120.0297 (2)0.0090 (2)0.6445 (2)0.0502 (9)
H120.00420.03020.68870.060*
C130.03945 (19)0.07127 (18)0.6368 (2)0.0405 (8)
H130.02000.10570.67620.049*
C140.1503 (2)0.0829 (2)0.4460 (2)0.0465 (9)
H14A0.12310.12690.42080.070*
H14B0.15650.03930.40810.070*
H14C0.19960.10160.46370.070*
C150.04670 (16)0.26069 (16)0.65182 (16)0.0273 (6)
H15A0.04090.22310.69650.033*
H15B0.07600.30800.66860.033*
C160.11518 (16)0.22124 (17)0.63808 (17)0.0270 (6)
C170.17584 (18)0.2076 (2)0.58852 (19)0.0377 (7)
H170.17840.23270.53830.045*
C180.2327 (2)0.1573 (2)0.6124 (2)0.0505 (10)
H180.27530.14960.57940.061*
C190.2277 (2)0.1185 (2)0.6839 (2)0.0477 (9)
H190.26600.08260.69920.057*
C200.1676 (2)0.1314 (2)0.7332 (2)0.0430 (8)
H200.16460.10420.78230.052*
C210.11141 (18)0.1838 (2)0.71164 (18)0.0356 (7)
H210.07070.19420.74660.043*
C220.06719 (17)0.38759 (18)0.63035 (17)0.0294 (6)
C230.0217 (2)0.4501 (2)0.6063 (2)0.0433 (8)
H230.02300.43930.57830.052*
C240.0414 (2)0.5281 (2)0.6231 (2)0.0510 (9)
H240.00950.57060.60770.061*
C250.1066 (2)0.5444 (2)0.6616 (2)0.0505 (9)
H250.12050.59820.67170.061*
C260.1520 (2)0.4832 (2)0.6855 (3)0.0575 (11)
H260.19710.49490.71250.069*
C270.1326 (2)0.4046 (2)0.6708 (2)0.0460 (9)
H270.16390.36250.68840.055*
Pd20.488381 (12)0.480723 (13)0.266672 (13)0.02681 (7)
P30.55839 (4)0.58234 (4)0.21988 (4)0.02569 (16)
P40.42890 (4)0.59234 (5)0.29718 (4)0.02862 (17)
Cl30.56527 (5)0.37017 (5)0.23698 (5)0.0431 (2)
Cl40.39319 (5)0.39998 (6)0.31809 (6)0.0586 (3)
C280.54532 (16)0.60223 (19)0.11524 (18)0.0347 (7)
C290.58273 (19)0.5576 (2)0.0591 (2)0.0418 (8)
C300.5684 (2)0.5757 (2)0.0217 (2)0.0530 (10)
H300.59370.54670.06160.064*
C310.5194 (3)0.6337 (3)0.0426 (2)0.0617 (12)
H310.51050.64400.09700.074*
C320.4827 (2)0.6775 (3)0.0124 (2)0.0603 (11)
H320.44850.71810.00310.072*
C330.4957 (2)0.6623 (2)0.08936 (19)0.0497 (9)
H330.47030.69340.12770.060*
C340.6361 (2)0.4946 (2)0.0783 (2)0.0529 (10)
H34A0.61620.46150.12090.079*
H34B0.68350.51860.09550.079*
H34C0.64450.46150.03160.079*
C350.65584 (16)0.58542 (18)0.25143 (18)0.0307 (7)
C360.70975 (19)0.6366 (2)0.2212 (2)0.0391 (8)
C370.78383 (19)0.6289 (2)0.2510 (2)0.0480 (9)
H370.82260.66120.23010.058*
C380.7998 (2)0.5756 (2)0.3093 (2)0.0524 (10)
H380.84990.57140.32790.063*
C390.7466 (2)0.5281 (2)0.3418 (2)0.0503 (9)
H390.75880.49290.38400.060*
C400.67476 (18)0.5321 (2)0.3125 (2)0.0386 (7)
H400.63730.49830.33380.046*
C410.6961 (2)0.6991 (3)0.1625 (3)0.0609 (11)
H41A0.65260.73090.17810.091*
H41B0.68630.67450.11090.091*
H41C0.74010.73370.15910.091*
C420.50777 (17)0.65964 (18)0.27665 (17)0.0318 (7)
H42A0.53490.67680.32490.038*
H42B0.49330.70650.24430.038*
C430.4046 (2)0.60883 (11)0.3993 (2)0.0342 (9)0.838 (9)
C440.3333 (3)0.6318 (3)0.4212 (2)0.0477 (12)0.838 (9)
H440.29560.63950.38210.057*0.838 (9)
C450.3168 (3)0.6437 (3)0.5005 (3)0.0557 (15)0.838 (9)
H450.26780.65880.51580.067*0.838 (9)
C460.3716 (3)0.6337 (2)0.5561 (2)0.0484 (13)0.838 (9)
H460.36060.64300.61010.058*0.838 (9)
C470.4423 (3)0.6103 (3)0.5352 (2)0.0474 (12)0.838 (9)
H470.47970.60320.57480.057*0.838 (9)
C480.4594 (3)0.5970 (3)0.4567 (3)0.0421 (10)0.838 (9)
H480.50810.58010.44230.050*0.838 (9)
C43B0.3923 (12)0.6025 (5)0.3961 (7)0.041 (3)0.162 (9)
C44B0.3159 (11)0.5970 (13)0.4095 (9)0.043 (3)0.162 (9)
H44B0.28260.58780.36650.052*0.162 (9)
C45B0.2882 (11)0.6049 (15)0.4854 (10)0.050 (3)0.162 (9)
H45B0.23590.60100.49440.060*0.162 (9)
C46B0.3361 (14)0.6182 (11)0.5473 (10)0.050 (3)0.162 (9)
H46B0.31690.62370.59910.060*0.162 (9)
C47B0.4113 (14)0.6237 (13)0.5349 (10)0.047 (3)0.162 (9)
H47B0.44410.63300.57830.057*0.162 (9)
C48B0.4406 (12)0.6158 (12)0.4593 (11)0.044 (3)0.162 (9)
H48B0.49300.61950.45120.052*0.162 (9)
C490.35162 (16)0.61621 (19)0.23292 (17)0.0313 (7)
C500.32022 (19)0.5565 (2)0.1869 (2)0.0418 (8)
H500.33800.50320.19120.050*
C510.2627 (2)0.5748 (2)0.1346 (2)0.0537 (10)
H510.24120.53430.10240.064*
C520.2368 (2)0.6517 (3)0.1295 (2)0.0527 (10)
H520.19710.66380.09390.063*
C530.2674 (2)0.7115 (2)0.1749 (2)0.0465 (9)
H530.24890.76450.17050.056*
C540.32488 (19)0.6945 (2)0.2270 (2)0.0424 (8)
H540.34620.73560.25850.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02804 (12)0.02685 (12)0.01816 (11)0.00370 (9)0.00142 (8)0.00013 (8)
P10.0263 (4)0.0273 (4)0.0233 (4)0.0031 (3)0.0014 (3)0.0008 (3)
P20.0238 (4)0.0290 (4)0.0211 (3)0.0058 (3)0.0023 (3)0.0014 (3)
Cl10.0511 (5)0.0393 (4)0.0215 (3)0.0050 (4)0.0079 (3)0.0004 (3)
Cl20.0319 (4)0.0551 (5)0.0330 (4)0.0009 (4)0.0036 (3)0.0092 (4)
C10.030 (3)0.033 (3)0.037 (3)0.004 (3)0.009 (3)0.009 (3)
C20.030 (3)0.043 (3)0.039 (4)0.000 (2)0.003 (2)0.013 (3)
C30.034 (3)0.060 (4)0.049 (5)0.002 (3)0.005 (3)0.011 (3)
C40.036 (3)0.065 (5)0.058 (5)0.008 (3)0.007 (3)0.009 (4)
C50.044 (4)0.058 (5)0.055 (4)0.009 (4)0.013 (3)0.001 (4)
C60.038 (3)0.049 (4)0.041 (3)0.007 (3)0.010 (3)0.007 (3)
C70.029 (3)0.047 (3)0.037 (4)0.005 (3)0.002 (3)0.003 (3)
C1B0.028 (3)0.038 (4)0.032 (4)0.005 (3)0.006 (3)0.012 (3)
C2B0.033 (3)0.046 (4)0.039 (4)0.002 (3)0.007 (3)0.014 (3)
C3B0.033 (3)0.057 (4)0.045 (5)0.006 (3)0.005 (4)0.010 (4)
C4B0.034 (4)0.057 (5)0.052 (5)0.011 (4)0.011 (4)0.008 (4)
C5B0.037 (4)0.042 (5)0.046 (4)0.010 (4)0.016 (4)0.009 (4)
C6B0.032 (4)0.039 (4)0.037 (4)0.005 (3)0.011 (3)0.010 (3)
C7B0.040 (4)0.059 (4)0.049 (5)0.003 (4)0.001 (4)0.010 (4)
C80.0303 (15)0.0284 (16)0.0348 (16)0.0030 (13)0.0090 (13)0.0020 (13)
C90.0317 (16)0.0336 (17)0.0411 (18)0.0027 (13)0.0133 (14)0.0029 (14)
C100.045 (2)0.0321 (18)0.060 (2)0.0054 (15)0.0196 (18)0.0081 (17)
C110.048 (2)0.0297 (18)0.079 (3)0.0077 (16)0.023 (2)0.0061 (19)
C120.051 (2)0.042 (2)0.057 (2)0.0136 (17)0.0108 (18)0.0180 (18)
C130.0424 (19)0.0363 (18)0.0427 (19)0.0055 (15)0.0046 (15)0.0062 (15)
C140.054 (2)0.040 (2)0.046 (2)0.0088 (17)0.0043 (17)0.0100 (16)
C150.0266 (14)0.0339 (16)0.0212 (14)0.0057 (12)0.0004 (11)0.0032 (12)
C160.0267 (15)0.0286 (15)0.0257 (14)0.0070 (12)0.0053 (11)0.0037 (12)
C170.0372 (18)0.0421 (19)0.0336 (17)0.0103 (15)0.0037 (14)0.0057 (14)
C180.041 (2)0.062 (2)0.049 (2)0.0247 (18)0.0103 (16)0.0066 (19)
C190.044 (2)0.053 (2)0.046 (2)0.0241 (17)0.0058 (16)0.0020 (17)
C200.049 (2)0.048 (2)0.0314 (17)0.0174 (17)0.0065 (15)0.0052 (15)
C210.0348 (17)0.0429 (19)0.0293 (16)0.0090 (14)0.0029 (13)0.0005 (14)
C220.0319 (16)0.0300 (16)0.0265 (15)0.0049 (13)0.0015 (12)0.0014 (12)
C230.0406 (19)0.0427 (19)0.047 (2)0.0079 (16)0.0139 (16)0.0009 (16)
C240.063 (2)0.0328 (19)0.058 (2)0.0119 (17)0.0082 (19)0.0061 (17)
C250.067 (3)0.0334 (19)0.051 (2)0.0003 (18)0.0089 (19)0.0042 (16)
C260.058 (2)0.044 (2)0.071 (3)0.0016 (18)0.028 (2)0.013 (2)
C270.046 (2)0.0380 (19)0.054 (2)0.0086 (16)0.0223 (17)0.0094 (16)
Pd20.02488 (12)0.02596 (12)0.02958 (12)0.00231 (9)0.00016 (9)0.00152 (9)
P30.0237 (4)0.0266 (4)0.0268 (4)0.0003 (3)0.0015 (3)0.0004 (3)
P40.0222 (4)0.0352 (4)0.0285 (4)0.0032 (3)0.0007 (3)0.0015 (3)
Cl30.0546 (5)0.0288 (4)0.0457 (5)0.0108 (4)0.0038 (4)0.0027 (3)
Cl40.0459 (5)0.0628 (6)0.0670 (6)0.0236 (5)0.0002 (4)0.0214 (5)
C280.0338 (17)0.0390 (18)0.0313 (16)0.0104 (14)0.0007 (13)0.0032 (14)
C290.0385 (18)0.043 (2)0.0439 (19)0.0111 (15)0.0035 (15)0.0048 (16)
C300.063 (3)0.059 (2)0.038 (2)0.021 (2)0.0048 (18)0.0074 (18)
C310.073 (3)0.070 (3)0.042 (2)0.020 (2)0.011 (2)0.010 (2)
C320.061 (3)0.063 (3)0.056 (3)0.004 (2)0.015 (2)0.017 (2)
C330.048 (2)0.053 (2)0.048 (2)0.0004 (18)0.0037 (17)0.0134 (18)
C340.060 (2)0.054 (2)0.045 (2)0.0025 (19)0.0065 (18)0.0048 (18)
C350.0266 (15)0.0328 (16)0.0326 (16)0.0000 (12)0.0046 (12)0.0094 (13)
C360.0393 (18)0.0353 (18)0.0427 (19)0.0064 (14)0.0080 (15)0.0084 (15)
C370.0345 (18)0.049 (2)0.061 (2)0.0116 (16)0.0045 (17)0.0186 (19)
C380.040 (2)0.049 (2)0.068 (3)0.0023 (17)0.0109 (18)0.019 (2)
C390.050 (2)0.048 (2)0.053 (2)0.0071 (18)0.0131 (18)0.0089 (18)
C400.0342 (17)0.0411 (19)0.0406 (18)0.0063 (14)0.0039 (14)0.0046 (15)
C410.056 (2)0.060 (3)0.067 (3)0.016 (2)0.001 (2)0.002 (2)
C420.0333 (16)0.0255 (15)0.0367 (17)0.0019 (13)0.0037 (13)0.0019 (13)
C430.031 (2)0.042 (2)0.0299 (18)0.0071 (16)0.0020 (15)0.0001 (16)
C440.035 (2)0.072 (3)0.036 (2)0.012 (2)0.0003 (17)0.002 (2)
C450.047 (3)0.079 (3)0.042 (2)0.023 (3)0.010 (2)0.002 (2)
C460.057 (3)0.057 (3)0.032 (2)0.014 (2)0.005 (2)0.0037 (19)
C470.051 (3)0.055 (3)0.035 (2)0.011 (2)0.010 (2)0.0057 (19)
C480.040 (2)0.049 (2)0.0375 (19)0.0142 (19)0.0023 (17)0.0002 (19)
C43B0.036 (5)0.054 (5)0.032 (4)0.015 (5)0.000 (4)0.002 (5)
C44B0.036 (5)0.060 (6)0.033 (5)0.014 (5)0.007 (4)0.001 (5)
C45B0.045 (5)0.069 (6)0.036 (5)0.016 (5)0.007 (4)0.005 (5)
C46B0.050 (5)0.065 (6)0.036 (5)0.020 (5)0.006 (5)0.002 (5)
C47B0.049 (5)0.057 (5)0.035 (4)0.015 (5)0.001 (5)0.002 (5)
C48B0.041 (5)0.053 (5)0.036 (4)0.014 (5)0.000 (4)0.000 (5)
C490.0237 (14)0.0420 (18)0.0282 (15)0.0010 (13)0.0032 (12)0.0024 (13)
C500.0366 (18)0.044 (2)0.0443 (19)0.0012 (15)0.0049 (15)0.0058 (16)
C510.051 (2)0.057 (2)0.053 (2)0.0087 (19)0.0182 (18)0.0015 (19)
C520.038 (2)0.066 (3)0.054 (2)0.0007 (18)0.0110 (17)0.022 (2)
C530.0390 (19)0.048 (2)0.053 (2)0.0085 (16)0.0016 (16)0.0133 (18)
C540.0365 (18)0.043 (2)0.048 (2)0.0033 (15)0.0014 (15)0.0033 (16)
Geometric parameters (Å, º) top
Pd1—P22.2197 (7)C27—H270.9500
Pd1—P12.2646 (8)Pd2—P42.2146 (8)
Pd1—Cl22.3564 (8)Pd2—P32.2604 (8)
Pd1—Cl12.3758 (7)Pd2—Cl42.3469 (9)
P1—C1B1.817 (6)Pd2—Cl32.3632 (8)
P1—C11.818 (5)P3—C281.817 (3)
P1—C81.821 (3)P3—C351.819 (3)
P1—C151.853 (3)P3—C421.853 (3)
P1—P22.6912 (11)P3—P42.6738 (10)
P2—C221.798 (3)P4—C491.797 (3)
P2—C161.800 (3)P4—C431.808 (4)
P2—C151.828 (3)P4—C43B1.812 (9)
C1—C61.389 (7)P4—C421.841 (3)
C1—C21.394 (7)C28—C291.386 (5)
C2—C31.395 (7)C28—C331.410 (5)
C2—C71.493 (7)C29—C301.423 (5)
C3—C41.359 (9)C29—C341.457 (5)
C3—H30.9500C30—C311.353 (6)
C4—C51.360 (9)C30—H300.9500
C4—H40.9500C31—C321.360 (6)
C5—C61.390 (7)C31—H310.9500
C5—H50.9500C32—C331.346 (5)
C6—H60.9500C32—H320.9500
C7—H7A0.9800C33—H330.9500
C7—H7B0.9800C34—H34A0.9800
C7—H7C0.9800C34—H34B0.9800
C1B—C6B1.392 (8)C34—H34C0.9800
C1B—C2B1.394 (8)C35—C361.391 (4)
C2B—C3B1.395 (8)C35—C401.406 (5)
C2B—C7B1.488 (9)C36—C371.420 (5)
C3B—C4B1.364 (10)C36—C411.463 (5)
C3B—H3B0.9500C37—C381.359 (6)
C4B—C5B1.360 (10)C37—H370.9500
C4B—H4B0.9500C38—C391.360 (6)
C5B—C6B1.386 (8)C38—H380.9500
C5B—H5B0.9500C39—C401.375 (5)
C6B—H6B0.9500C39—H390.9500
C7B—H7D0.9800C40—H400.9500
C7B—H7E0.9800C41—H41A0.9800
C7B—H7F0.9800C41—H41B0.9800
C8—C131.399 (4)C41—H41C0.9800
C8—C91.400 (4)C42—H42A0.9900
C9—C101.396 (5)C42—H42B0.9900
C9—C141.494 (5)C43—C441.385 (5)
C10—C111.359 (6)C43—C481.390 (5)
C10—H100.9500C44—C451.392 (5)
C11—C121.366 (6)C44—H440.9500
C11—H110.9500C45—C461.364 (5)
C12—C131.362 (5)C45—H450.9500
C12—H120.9500C46—C471.373 (5)
C13—H130.9500C46—H460.9500
C14—H14A0.9800C47—C481.385 (5)
C14—H14B0.9800C47—H470.9500
C14—H14C0.9800C48—H480.9500
C15—H15A0.9900C43B—C44B1.388 (8)
C15—H15B0.9900C43B—C48B1.388 (8)
C16—C171.385 (4)C44B—C45B1.389 (9)
C16—C211.396 (4)C44B—H44B0.9500
C17—C181.383 (5)C45B—C46B1.366 (9)
C17—H170.9500C45B—H45B0.9500
C18—C191.378 (5)C46B—C47B1.366 (9)
C18—H180.9500C46B—H46B0.9500
C19—C201.371 (5)C47B—C48B1.392 (9)
C19—H190.9500C47B—H47B0.9500
C20—C211.386 (4)C48B—H48B0.9500
C20—H200.9500C49—C501.384 (5)
C21—H210.9500C49—C541.400 (5)
C22—C231.389 (4)C50—C511.387 (5)
C22—C271.390 (4)C50—H500.9500
C23—C241.383 (5)C51—C521.370 (6)
C23—H230.9500C51—H510.9500
C24—C251.367 (5)C52—C531.375 (5)
C24—H240.9500C52—H520.9500
C25—C261.371 (5)C53—C541.379 (5)
C25—H250.9500C53—H530.9500
C26—C271.385 (5)C54—H540.9500
C26—H260.9500
P2—Pd1—P173.75 (3)P4—Pd2—P373.37 (3)
P2—Pd1—Cl292.04 (3)P4—Pd2—Cl492.83 (4)
P1—Pd1—Cl2165.68 (3)P3—Pd2—Cl4165.80 (4)
P2—Pd1—Cl1174.57 (3)P4—Pd2—Cl3173.13 (3)
P1—Pd1—Cl1101.39 (3)P3—Pd2—Cl3101.03 (3)
Cl2—Pd1—Cl192.88 (3)Cl4—Pd2—Cl392.96 (4)
C1B—P1—C8114.2 (5)C28—P3—C35113.40 (14)
C1—P1—C8110.4 (4)C28—P3—C42108.57 (15)
C1B—P1—C15107.2 (5)C35—P3—C42107.34 (13)
C1—P1—C15105.1 (4)C28—P3—Pd2114.39 (10)
C8—P1—C15109.11 (14)C35—P3—Pd2116.74 (11)
C1B—P1—Pd1116.1 (4)C42—P3—Pd294.05 (10)
C1—P1—Pd1121.9 (3)C28—P3—P4111.16 (10)
C8—P1—Pd1114.40 (9)C35—P3—P4133.25 (10)
C15—P1—Pd193.27 (9)Pd2—P3—P452.53 (2)
C1B—P1—P2131.8 (5)C49—P4—C43110.86 (16)
C1—P1—P2133.6 (3)C49—P4—C43B104.9 (7)
C8—P1—P2111.94 (10)C49—P4—C42109.60 (14)
Pd1—P1—P252.36 (2)C43—P4—C42106.10 (13)
C22—P2—C16108.49 (14)C43B—P4—C42113.6 (6)
C22—P2—C15109.67 (13)C49—P4—Pd2114.51 (11)
C16—P2—C15110.24 (14)C43—P4—Pd2118.15 (10)
C22—P2—Pd1116.29 (10)C43B—P4—Pd2118.2 (3)
C16—P2—Pd1115.86 (9)C42—P4—Pd295.94 (10)
C15—P2—Pd195.48 (9)C49—P4—P3112.43 (10)
C22—P2—P1135.28 (10)C43—P4—P3133.92 (13)
C16—P2—P1114.41 (10)C43B—P4—P3141.2 (7)
Pd1—P2—P153.89 (2)Pd2—P4—P354.10 (2)
C6—C1—C2120.8 (5)C29—C28—C33118.6 (3)
C6—C1—P1117.3 (6)C29—C28—P3120.7 (3)
C2—C1—P1121.9 (6)C33—C28—P3120.7 (3)
C1—C2—C3117.6 (6)C28—C29—C30117.4 (3)
C1—C2—C7125.6 (6)C28—C29—C34123.7 (3)
C3—C2—C7116.8 (6)C30—C29—C34118.8 (3)
C4—C3—C2120.5 (7)C31—C30—C29121.1 (4)
C4—C3—H3119.8C31—C30—H30119.4
C2—C3—H3119.8C29—C30—H30119.4
C3—C4—C5122.7 (6)C30—C31—C32121.5 (4)
C3—C4—H4118.6C30—C31—H31119.2
C5—C4—H4118.6C32—C31—H31119.2
C4—C5—C6118.2 (7)C33—C32—C31118.8 (4)
C4—C5—H5120.9C33—C32—H32120.6
C6—C5—H5120.9C31—C32—H32120.6
C1—C6—C5120.2 (7)C32—C33—C28122.6 (4)
C1—C6—H6119.9C32—C33—H33118.7
C5—C6—H6119.9C28—C33—H33118.7
C6B—C1B—C2B120.3 (7)C29—C34—H34A109.5
C6B—C1B—P1115.9 (8)C29—C34—H34B109.5
C2B—C1B—P1123.8 (7)H34A—C34—H34B109.5
C1B—C2B—C3B118.3 (8)C29—C34—H34C109.5
C1B—C2B—C7B123.7 (8)H34A—C34—H34C109.5
C3B—C2B—C7B118.0 (8)H34B—C34—H34C109.5
C4B—C3B—C2B120.4 (8)C36—C35—C40120.0 (3)
C4B—C3B—H3B119.8C36—C35—P3125.0 (3)
C2B—C3B—H3B119.8C40—C35—P3115.0 (2)
C5B—C4B—C3B121.8 (8)C35—C36—C37117.3 (3)
C5B—C4B—H4B119.1C35—C36—C41125.4 (3)
C3B—C4B—H4B119.1C37—C36—C41117.2 (3)
C4B—C5B—C6B119.2 (8)C38—C37—C36120.5 (3)
C4B—C5B—H5B120.4C38—C37—H37119.7
C6B—C5B—H5B120.4C36—C37—H37119.7
C5B—C6B—C1B120.0 (8)C37—C38—C39122.4 (4)
C5B—C6B—H6B120.0C37—C38—H38118.8
C1B—C6B—H6B120.0C39—C38—H38118.8
C2B—C7B—H7D109.5C38—C39—C40118.6 (4)
C2B—C7B—H7E109.5C38—C39—H39120.7
H7D—C7B—H7E109.5C40—C39—H39120.7
C2B—C7B—H7F109.5C39—C40—C35121.0 (3)
H7D—C7B—H7F109.5C39—C40—H40119.5
H7E—C7B—H7F109.5C35—C40—H40119.5
C13—C8—C9119.0 (3)C36—C41—H41A109.5
C13—C8—P1120.4 (2)C36—C41—H41B109.5
C9—C8—P1120.6 (2)H41A—C41—H41B109.5
C10—C9—C8117.2 (3)C36—C41—H41C109.5
C10—C9—C14119.6 (3)H41A—C41—H41C109.5
C8—C9—C14123.2 (3)H41B—C41—H41C109.5
C11—C10—C9122.3 (4)P4—C42—P392.73 (14)
C11—C10—H10118.8P4—C42—H42A113.2
C9—C10—H10118.8P3—C42—H42A113.2
C10—C11—C12120.5 (3)P4—C42—H42B113.2
C10—C11—H11119.7P3—C42—H42B113.2
C12—C11—H11119.7H42A—C42—H42B110.5
C13—C12—C11118.9 (4)C44—C43—C48119.8 (3)
C13—C12—H12120.5C44—C43—P4121.9 (3)
C11—C12—H12120.5C48—C43—P4118.3 (3)
C12—C13—C8122.0 (3)C43—C44—C45120.1 (4)
C12—C13—H13119.0C43—C44—H44120.0
C8—C13—H13119.0C45—C44—H44120.0
C9—C14—H14A109.5C46—C45—C44119.5 (4)
C9—C14—H14B109.5C46—C45—H45120.2
H14A—C14—H14B109.5C44—C45—H45120.2
C9—C14—H14C109.5C45—C46—C47121.0 (4)
H14A—C14—H14C109.5C45—C46—H46119.5
H14B—C14—H14C109.5C47—C46—H46119.5
P2—C15—P193.95 (13)C46—C47—C48120.3 (4)
P2—C15—H15A112.9C46—C47—H47119.9
P1—C15—H15A112.9C48—C47—H47119.9
P2—C15—H15B112.9C47—C48—C43119.3 (4)
P1—C15—H15B112.9C47—C48—H48120.3
H15A—C15—H15B110.4C43—C48—H48120.3
C17—C16—C21119.9 (3)C44B—C43B—C48B119.4 (10)
C17—C16—P2118.4 (2)C44B—C43B—P4120.5 (12)
C21—C16—P2121.6 (2)C48B—C43B—P4120.1 (13)
C18—C17—C16119.8 (3)C43B—C44B—C45B120.3 (11)
C18—C17—H17120.1C43B—C44B—H44B119.9
C16—C17—H17120.1C45B—C44B—H44B119.9
C19—C18—C17120.1 (3)C46B—C45B—C44B120.0 (11)
C19—C18—H18120.0C46B—C45B—H45B120.0
C17—C18—H18120.0C44B—C45B—H45B120.0
C20—C19—C18120.5 (3)C45B—C46B—C47B120.4 (12)
C20—C19—H19119.8C45B—C46B—H46B119.8
C18—C19—H19119.8C47B—C46B—H46B119.8
C19—C20—C21120.3 (3)C46B—C47B—C48B120.8 (12)
C19—C20—H20119.8C46B—C47B—H47B119.6
C21—C20—H20119.8C48B—C47B—H47B119.6
C20—C21—C16119.3 (3)C43B—C48B—C47B119.3 (11)
C20—C21—H21120.3C43B—C48B—H48B120.4
C16—C21—H21120.3C47B—C48B—H48B120.4
C23—C22—C27119.1 (3)C50—C49—C54120.0 (3)
C23—C22—P2119.4 (2)C50—C49—P4119.1 (3)
C27—C22—P2121.5 (2)C54—C49—P4120.8 (3)
C24—C23—C22120.1 (3)C49—C50—C51119.6 (3)
C24—C23—H23119.9C49—C50—H50120.2
C22—C23—H23119.9C51—C50—H50120.2
C25—C24—C23120.4 (3)C52—C51—C50119.8 (4)
C25—C24—H24119.8C52—C51—H51120.1
C23—C24—H24119.8C50—C51—H51120.1
C24—C25—C26120.0 (3)C51—C52—C53121.2 (3)
C24—C25—H25120.0C51—C52—H52119.4
C26—C25—H25120.0C53—C52—H52119.4
C25—C26—C27120.6 (4)C52—C53—C54119.9 (3)
C25—C26—H26119.7C52—C53—H53120.1
C27—C26—H26119.7C54—C53—H53120.1
C26—C27—C22119.7 (3)C53—C54—C49119.5 (3)
C26—C27—H27120.1C53—C54—H54120.3
C22—C27—H27120.1C49—C54—H54120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cl10.982.633.612 (4)179
C34—H34A···Cl30.982.663.637 (4)179

Experimental details

Crystal data
Chemical formula[PdCl2(C27H26P2)]
Mr589.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)17.8761 (10), 16.7568 (9), 16.9407 (9)
β (°) 90.446 (3)
V3)5074.4 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.30 × 0.28 × 0.26
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionIntegration
(SHELXTL/XPREP; Bruker, 2005)
Tmin, Tmax0.728, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
83307, 9350, 8400
Rint0.037
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 1.26
No. of reflections9350
No. of parameters702
No. of restraints469
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.47

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2005), XPREP (Bruker, 2005) and SADABS (Bruker, 2007), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and CrystalMaker (CrystalMaker, 1994), XCIF (Bruker, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cl10.982.633.612 (4)178.9
C34—H34A···Cl30.982.663.637 (4)178.7
 

Acknowledgements

We thank the National Science Foundation (grant CHE-0548107) for support of this work. AHB thanks the NSF LSAMP Program (grant HRD-0413000) for research support. The Materials Chemistry Laboratory at the University of Illinois was supported in part by grants from the NSF (CHE 95–03145 and CHE 03–43032).

References

First citationBruker (2004). APEX2. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxford, England (www.CrystalMaker.com).  Google Scholar
First citationDossett, S. J., Gillon, A., Orpen, A. G., Fleming, J. S., Pringle, P. G., Wass, D. F. & Jones, M. D. (2001). Chem. Commun. pp. 699–700.  Web of Science CSD CrossRef Google Scholar
First citationFilby, M., Deeming, A. J., Hogarth, G. & Lee, M.-Y. (2006). Can. J. Chem. 84 319–329.  Web of Science CSD CrossRef CAS Google Scholar
First citationGauthron, I., Mugnier, Y., Hierso, K. & Harvey, P. D. (1998). New J. Chem. pp, 237–246.  Web of Science CrossRef Google Scholar
First citationMague, J. T., Pool, D. H. & Fink, M. J. (2007). Acta Cryst. E63, m3083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahid, M., Imtiaz-ud-Din, Mazhar, M., Zeller, M. & Hunter, A. D. (2009). Acta Cryst. E65, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteffen, W. L. & Palenik, G. J. (1976). Inorg. Chem. 15, 2432–2439.  CSD CrossRef CAS Web of Science Google Scholar
First citationWass, D. F. (2001). PCT Int. Appl. WO 2001010876 A1 20010215.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1233-m1234
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds