organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Hydr­­oxy-3-meth­oxy­benzyl­­idene)acetohydrazide monohydrate

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, bZhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, People's Republic of China, and cResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 6 August 2009; accepted 16 September 2009; online 26 September 2009)

In the title compound, C10H12N2O3·H2O, the Schiff base mol­ecule is approximately planar [within 0.189 (1) Å]. The inter­planar angle between the benzene and acetohydrazide planes is 8.50 (10)°. In the crystal, mol­ecules are linked into a three-dimensional network by strong and weak O—H⋯O and strong N—H⋯O hydrogen bonds. The hydr­oxy H atom deviates from the 4-hydr­oxy-3-methoxy­phenyl mean plane by 0.319 (2) Å, probably due to the involvement of this H atom in the O—H⋯O hydrogen bond. The weak O—H⋯O hydrogen bond is involved in a bifurcated hydrogen bond with R12(4) motif. A weak C—H⋯π inter­action is also present.

Related literature

For general background to Schiff bases, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]); Offe et al. (1952[Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446-447.]); Richardson et al. (1988[Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss Inc.]). For related structures, see: Li & Jian (2008[Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.]); Tamboura et al. (2009[Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160-m161.]). For hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, p. 13. New York: International Union of Crystallography and Oxford University Press Inc.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O3·H2O

  • Mr = 226.23

  • Orthorhombic, P b c a

  • a = 7.892 (2) Å

  • b = 16.374 (5) Å

  • c = 18.334 (6) Å

  • V = 2369.3 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 223 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.979

  • 11089 measured reflections

  • 2138 independent reflections

  • 1484 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.07

  • 2138 reflections

  • 159 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1W 0.93 (2) 1.69 (2) 2.614 (2) 170 (2)
O1W—H9B⋯O1i 0.87 (3) 2.19 (3) 2.899 (2) 139 (2)
O1W—H9B⋯O2i 0.87 (3) 2.27 (2) 3.0506 (19) 148 (2)
N2—H2⋯O3ii 0.837 (15) 2.023 (15) 2.851 (2) 169.6 (18)
O1W—H9A⋯O3iii 0.87 (2) 1.91 (2) 2.768 (2) 167 (2)
C10—H10CCg1iv 0.96 2.91 3.581 (3) 128
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C2–C7 ring.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have attracted much attention due to possibility of their analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to show mild bacteriostatic activity and to be potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds with active centres in various complexes (Tamboura et al., 2009). Here we report the crystal structure of the title compound (Fig. 1).

In the Schiff base molecule, the acetohydrazide group is planar and it contains a dihedral angle equal 8.50 (10)° to the benzene ring. The molecule adopts the trans configuration with respect to the CN bond. Bond lengths and angles are comparable to those observed for N'-[1-(4-methoxyphenyl)ethylidene]acetohydrazide (Li et al., 2008).

In the crystal structure, the Schiff base and water molecules are linked into a three-dimensional network by strong and weak (Desiraju & Steiner, 1999) O—H···O and strong N—H···O hydrogen bonds (Tab. 1). The weak O—H···O hydrogen bond is involved in the bifurcated hydrogen bond with the motif R21(4) (Etter et al., 1990). Intermolecular C—H···π interactions are also present in the structure. It is of interest, that the atom H1 of the hydroxyl group deviates significantly from the mean plane of 4-hydroxy-3-methoxyphenyl (the atoms C1-C7//O1//O2) by 0.319 (2)Å. This feature can be explained by its involvement into the O1—H1···O1W hydrogen bond (Tab. 1).

Related literature top

For general background to Schiff bases, see: Cimerman et al. (1997); Offe et al. (1952); Richardson et al. (1988). For related structures, see: Li & Jian (2008); Tamboura et al. (2009). For hydrogen bonds, see: Desiraju & Steiner (1999); Etter et al. (1990). Cg1 is the centroid composed of the ring C2–C7.

Experimental top

4-Hydroxy-3-methoxybenzaldehyde (1.50 g, 0.01 mol) and acetohydrazide (0.74 g, 0.01 mol) were dissolved in methanol (20 ml) and stirred for 1.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 88% yield. Colourless single crystals (0.8 × 0.6 × 0.5mm) suitable for X-ray analysis were obtained by slow evaporation from ethanol solution at room temperature (m. p. 492–494 K).

Refinement top

All the hydrogen atoms could have been discerned in the difference electron density map, nevertheless, all the hydrogens attached to the carbon atoms were constrained in a riding motion approximation: Caryl-H = 0.93, Cmethyl-H = 0.96Å; UisoHaryl = 1.2UeqCaryl, UisoHmethyl=1.5UeqCmethyl. The coordinates of the water hydrogens were freely refined with UisoHOw=1.5UeqOw. The N2-H2 distance was restrained to 0.87 (2) Å, UisoH2 =1.2UeqN2.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title structure. The displacement ellipsoids are drawn at the 40% probability level. The dashed lines indicate the hydrogen bonds.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
N'-(4-Hydroxy-3-methoxybenzylidene)acetohydrazide monohydrate top
Crystal data top
C10H12N2O3·H2ODx = 1.268 Mg m3
Mr = 226.23Melting point = 492–494 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2085 reflections
a = 7.892 (2) Åθ = 2.2–25.0°
b = 16.374 (5) ŵ = 0.10 mm1
c = 18.334 (6) ÅT = 223 K
V = 2369.3 (13) Å3Block, colourless
Z = 80.24 × 0.20 × 0.18 mm
F(000) = 960
Data collection top
Bruker SMART CCD area-detector
diffractometer
2138 independent reflections
Radiation source: fine-focus sealed tube1484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 98
Tmin = 0.977, Tmax = 0.979k = 1919
11089 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.0171P]
where P = (Fo2 + 2Fc2)/3
2138 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.19 e Å3
41 constraints
Crystal data top
C10H12N2O3·H2OV = 2369.3 (13) Å3
Mr = 226.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.892 (2) ŵ = 0.10 mm1
b = 16.374 (5) ÅT = 223 K
c = 18.334 (6) Å0.24 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2138 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1484 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.979Rint = 0.045
11089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.14 e Å3
2138 reflectionsΔρmin = 0.19 e Å3
159 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.44998 (15)0.16677 (8)0.62044 (7)0.0551 (4)
O10.58987 (17)0.08238 (8)0.51886 (7)0.0548 (4)
H10.661 (3)0.0446 (14)0.4961 (12)0.082*
N21.03345 (18)0.42155 (9)0.73839 (8)0.0446 (4)
H21.131 (2)0.4257 (11)0.7207 (10)0.053*
O30.85188 (16)0.45567 (8)0.82838 (7)0.0593 (4)
N10.92032 (17)0.36650 (8)0.70786 (7)0.0414 (4)
C70.8701 (2)0.26735 (10)0.61434 (9)0.0400 (4)
C30.6871 (2)0.14216 (10)0.54766 (9)0.0404 (4)
C40.7033 (2)0.25087 (10)0.63651 (9)0.0415 (4)
H40.65400.28170.67350.050*
C20.6124 (2)0.18899 (10)0.60350 (9)0.0399 (4)
C90.9926 (2)0.46154 (11)0.79905 (10)0.0471 (5)
C80.9721 (2)0.32982 (10)0.65066 (9)0.0427 (5)
H81.07760.34320.63150.051*
C50.8503 (2)0.15935 (11)0.52546 (9)0.0453 (5)
H50.89920.12930.48790.054*
C60.9417 (2)0.22132 (10)0.55890 (9)0.0452 (5)
H61.05210.23210.54400.054*
C101.1285 (3)0.51521 (13)0.83054 (11)0.0679 (6)
H10A1.21780.52190.79550.102*
H10B1.17320.49040.87390.102*
H10C1.08150.56760.84230.102*
C10.3699 (3)0.20816 (14)0.67877 (12)0.0760 (7)
H1A0.25760.18680.68540.114*
H1B0.36360.26540.66790.114*
H1C0.43420.20030.72270.114*
O1W0.75904 (19)0.03511 (8)0.45548 (8)0.0579 (4)
H9A0.791 (3)0.0175 (14)0.4128 (12)0.087*
H9B0.676 (3)0.0698 (15)0.4498 (13)0.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0375 (8)0.0614 (9)0.0665 (9)0.0106 (6)0.0067 (7)0.0210 (6)
O10.0473 (9)0.0537 (8)0.0635 (8)0.0095 (7)0.0024 (7)0.0189 (6)
N20.0254 (8)0.0517 (9)0.0566 (10)0.0096 (7)0.0013 (7)0.0094 (7)
O30.0361 (8)0.0803 (10)0.0615 (9)0.0070 (7)0.0040 (7)0.0184 (7)
N10.0317 (9)0.0435 (8)0.0489 (9)0.0073 (6)0.0042 (7)0.0020 (7)
C70.0381 (11)0.0419 (10)0.0398 (9)0.0054 (8)0.0028 (8)0.0050 (7)
C30.0413 (11)0.0396 (9)0.0402 (9)0.0029 (8)0.0045 (8)0.0004 (8)
C40.0366 (11)0.0447 (10)0.0431 (9)0.0001 (8)0.0025 (8)0.0032 (7)
C20.0322 (10)0.0421 (10)0.0454 (10)0.0015 (8)0.0025 (8)0.0005 (8)
C90.0324 (11)0.0516 (11)0.0571 (12)0.0013 (9)0.0033 (9)0.0094 (9)
C80.0339 (10)0.0473 (10)0.0469 (11)0.0060 (8)0.0008 (8)0.0020 (8)
C50.0478 (12)0.0494 (11)0.0387 (10)0.0036 (9)0.0053 (8)0.0012 (8)
C60.0394 (11)0.0502 (11)0.0459 (10)0.0095 (8)0.0068 (8)0.0046 (8)
C100.0428 (13)0.0720 (14)0.0890 (16)0.0084 (11)0.0020 (11)0.0344 (12)
C10.0428 (13)0.0937 (17)0.0913 (16)0.0117 (12)0.0174 (12)0.0392 (13)
O1W0.0526 (10)0.0591 (9)0.0620 (8)0.0126 (7)0.0080 (7)0.0117 (7)
Geometric parameters (Å, º) top
O2—C21.368 (2)C4—H40.9300
O2—C11.415 (2)C9—C101.502 (3)
O1—C31.351 (2)C8—H80.9300
O1—H10.93 (2)C5—C61.388 (2)
N2—C91.330 (2)C5—H50.9300
N2—N11.3868 (19)C6—H60.9300
N2—H20.837 (15)C10—H10A0.9600
O3—C91.238 (2)C10—H10B0.9600
N1—C81.276 (2)C10—H10C0.9600
C7—C61.386 (2)C1—H1A0.9600
C7—C41.403 (2)C1—H1B0.9600
C7—C81.462 (2)C1—H1C0.9600
C3—C51.380 (3)O1W—H9A0.87 (2)
C3—C21.408 (2)O1W—H9B0.87 (3)
C4—C21.381 (2)
C2—O2—C1117.56 (14)N1—C8—H8119.1
C3—O1—H1108.4 (15)C7—C8—H8119.1
C9—N2—N1120.09 (15)C3—C5—C6120.27 (16)
C9—N2—H2120.5 (13)C3—C5—H5119.9
N1—N2—H2119.1 (13)C6—C5—H5119.9
C8—N1—N2115.58 (14)C7—C6—C5120.65 (16)
C6—C7—C4119.35 (16)C7—C6—H6119.7
C6—C7—C8119.34 (16)C5—C6—H6119.7
C4—C7—C8121.25 (16)C9—C10—H10A109.5
O1—C3—C5124.23 (16)C9—C10—H10B109.5
O1—C3—C2116.17 (16)H10A—C10—H10B109.5
C5—C3—C2119.60 (16)C9—C10—H10C109.5
C2—C4—C7120.09 (16)H10A—C10—H10C109.5
C2—C4—H4120.0H10B—C10—H10C109.5
C7—C4—H4120.0O2—C1—H1A109.5
O2—C2—C4125.62 (15)O2—C1—H1B109.5
O2—C2—C3114.35 (14)H1A—C1—H1B109.5
C4—C2—C3120.02 (16)O2—C1—H1C109.5
O3—C9—N2122.85 (16)H1A—C1—H1C109.5
O3—C9—C10121.28 (17)H1B—C1—H1C109.5
N2—C9—C10115.87 (17)H9A—O1W—H9B109 (2)
N1—C8—C7121.84 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1W0.93 (2)1.69 (2)2.614 (2)170 (2)
O1W—H9B···O1i0.87 (3)2.19 (3)2.899 (2)139 (2)
O1W—H9B···O2i0.87 (3)2.27 (2)3.0506 (19)148 (2)
N2—H2···O3ii0.84 (2)2.02 (2)2.851 (2)170 (2)
O1W—H9A···O3iii0.87 (2)1.91 (2)2.768 (2)167 (2)
C10—H10C···Cg1iv0.962.913.581 (3)128
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y, z+3/2; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H12N2O3·H2O
Mr226.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)223
a, b, c (Å)7.892 (2), 16.374 (5), 18.334 (6)
V3)2369.3 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.977, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
11089, 2138, 1484
Rint0.045
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.07
No. of reflections2138
No. of parameters159
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1W0.93 (2)1.69 (2)2.614 (2)170 (2)
O1W—H9B···O1i0.87 (3)2.19 (3)2.899 (2)139 (2)
O1W—H9B···O2i0.87 (3)2.27 (2)3.0506 (19)148 (2)
N2—H2···O3ii0.837 (15)2.023 (15)2.851 (2)169.6 (18)
O1W—H9A···O3iii0.87 (2)1.91 (2)2.768 (2)167 (2)
C10—H10C···Cg1iv0.962.913.581 (3)128.0
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y, z+3/2; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Science and Technology Project of Zhejiang Province (grant No. 2007 F70077) for financial support.

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, p. 13. New York: International Union of Crystallography and Oxford University Press Inc.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOffe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.  Google Scholar
First citationRichardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss Inc.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds