organic compounds
2,9-Dimethyl-6H,13H-5:12,7:14-dimethanodibenzo[d,i][1,3,6,8]tetraazecine
aDepartamento de Química, Universidad Nacional de Colombia, Bogotá, AA 14490, Colombia, and bEd. CACTUS, Campus Sur, Unidade de Raios X, Universidad de Santiago de Compostela, 15782, Spain
*Correspondence e-mail: ariverau@unal.edu.co
In the title structure, C18H20N4, the aromatic rings are almost orthogonal [81.6 (2)°]. The molecule has symmetry 2 since it is situated on a crystallographic twofold axis. There are only weak intermolecular interactions present in the structure, notably C—H⋯π-electron ring interactions. The 1H and 13C NMR spectra are in accordance with the X-ray structure analysis.
Related literature
For the synthesis of the title compound, see: Volpp (1962); Kuznetsov et al. (2007). For related structures, see: Dickinson & Raymond (1923); Murray-Rust (1974); Murray-Rust & Ridell (1975); Murray-Rust & Smith (1975); Glister et al. (2005); Rivera et al. (2007); Volpp (1962). For the chemical reactivity of cyclic see: Rivera et al. (2005); Rivera & Maldonado (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809038380/fb2167sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809038380/fb2167Isup2.hkl
A solution of 4-methyl-1,2-diaminebenzene (100 mg, 0.82 mmol) in water (8 ml) and methanol (2 ml) was added dropwise at 278 K to 5 ml of 37% aqueous formaldehyde while stirring it. The reaction mixture was removed from the cooling bath and allowed to warm to room temperature while still stirring it. After stirring at room temperature for 1 h the resultant precipitate was filtered off, washed with water, dried in vacuum and recrystallized from 2-propanol to give the title compound with 65% yield. The melting point of the title structure is 465 K. The melting point was determined visually using glass capillary tube with an Electrothermal melting point apparatus, model 9100, accuracy ±0.5 K, manufacturer: Electrothermal Thermo Scientific.
The NMR spectra were acquired at room temperature on a Bruker AMX 400 Advance spectrometer. 1H NMR (δ, 399.9 MHz, CDCl3): 2.33, 4.34, 6.92, 6.98. 13C NMR (δ, 100.0 MHz, CDCl3): 21.0, 68.6, 126.1, 126.7, 136.2, 150.3, 153.2. m/z (EI): 292.2 (M+).
All the H atoms were discernible in the difference electron density maps. However, the H atoms were constrained by the riding model approximation: C—Hmethyl=0.96 Å; C—Haryl=0.93 Å; UisoHmethyl=1.5UeqCmethyl; UisoHaryl=1.2UeqCaryl. In the absence of significant
effects 667 Friedel pairs have been merged.Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C18H20N4 | Dx = 1.343 Mg m−3 |
Mr = 292.38 | Melting point: 465 K |
Orthorhombic, Aba2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: A 2 -2ac | Cell parameters from 3533 reflections |
a = 9.9777 (3) Å | θ = 3.0–26.1° |
b = 18.8351 (4) Å | µ = 0.08 mm−1 |
c = 7.6963 (2) Å | T = 100 K |
V = 1446.37 (7) Å3 | Prism, colourless |
Z = 4 | 0.16 × 0.15 × 0.06 mm |
F(000) = 624 |
Bruker APEXII CCD diffractometer | 737 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.041 |
ω and ϕ scans | θmax = 26.4°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2006) | h = −12→12 |
Tmin = 0.872, Tmax = 0.995 | k = −23→23 |
10245 measured reflections | l = −9→9 |
807 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0593P)2 + 0.5089P] where P = (Fo2 + 2Fc2)/3 |
807 reflections | (Δ/σ)max < 0.001 |
102 parameters | Δρmax = 0.18 e Å−3 |
1 restraint | Δρmin = −0.18 e Å−3 |
47 constraints |
C18H20N4 | V = 1446.37 (7) Å3 |
Mr = 292.38 | Z = 4 |
Orthorhombic, Aba2 | Mo Kα radiation |
a = 9.9777 (3) Å | µ = 0.08 mm−1 |
b = 18.8351 (4) Å | T = 100 K |
c = 7.6963 (2) Å | 0.16 × 0.15 × 0.06 mm |
Bruker APEXII CCD diffractometer | 807 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2006) | 737 reflections with I > 2σ(I) |
Tmin = 0.872, Tmax = 0.995 | Rint = 0.041 |
10245 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 1 restraint |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.18 e Å−3 |
807 reflections | Δρmin = −0.18 e Å−3 |
102 parameters |
Experimental. The temperature was set with accuracy ±2 K. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.8848 (2) | 0.09201 (10) | 0.1159 (3) | 0.0154 (5) | |
C2 | 0.7950 (2) | 0.14289 (11) | 0.1743 (3) | 0.0179 (5) | |
H2 | 0.7273 | 0.1303 | 0.2555 | 0.021* | |
C3 | 0.8041 (2) | 0.21256 (11) | 0.1138 (3) | 0.0189 (5) | |
H3 | 0.7407 | 0.2469 | 0.1516 | 0.023* | |
C4 | 0.9044 (2) | 0.23234 (10) | −0.0007 (3) | 0.0179 (5) | |
C5 | 0.9937 (2) | 0.18036 (11) | −0.0609 (3) | 0.0183 (5) | |
H5 | 1.0628 | 0.1932 | −0.1398 | 0.022* | |
C6 | 0.9825 (2) | 0.11024 (11) | −0.0067 (3) | 0.0161 (5) | |
C7 | 1.0000 | 0.0000 | −0.1714 (4) | 0.0185 (7) | |
H7A | 0.9337 | 0.0235 | −0.2479 | 0.022* | 0.50 |
H7B | 1.0663 | −0.0235 | −0.2479 | 0.022* | 0.50 |
C8 | 0.8318 (2) | −0.03101 (10) | 0.0540 (3) | 0.0173 (5) | |
H8A | 0.7966 | −0.0728 | 0.1173 | 0.021* | |
H8B | 0.7556 | −0.0095 | −0.0093 | 0.021* | |
C9 | 1.0000 | 0.0000 | 0.2796 (4) | 0.0157 (7) | |
H9A | 0.9756 | −0.0402 | 0.3562 | 0.019* | 0.50 |
H9B | 1.0244 | 0.0402 | 0.3562 | 0.019* | 0.50 |
C10 | 0.9187 (2) | 0.30907 (11) | −0.0569 (3) | 0.0229 (5) | |
H10A | 0.8308 | 0.3322 | −0.0538 | 0.034* | |
H10B | 0.9545 | 0.3109 | −0.1754 | 0.034* | |
H10C | 0.9800 | 0.3337 | 0.0221 | 0.034* | |
N1 | 1.07122 (18) | 0.05643 (9) | −0.0750 (2) | 0.0177 (4) | |
N2 | 0.87874 (17) | 0.02065 (8) | 0.1833 (2) | 0.0155 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0184 (10) | 0.0147 (9) | 0.0131 (10) | −0.0011 (7) | −0.0031 (9) | 0.0001 (9) |
C2 | 0.0181 (10) | 0.0192 (10) | 0.0163 (11) | −0.0007 (8) | −0.0019 (9) | −0.0009 (9) |
C3 | 0.0212 (10) | 0.0174 (9) | 0.0179 (11) | 0.0028 (8) | −0.0042 (9) | −0.0003 (9) |
C4 | 0.0235 (11) | 0.0157 (10) | 0.0146 (10) | 0.0019 (8) | −0.0050 (10) | −0.0007 (8) |
C5 | 0.0228 (11) | 0.0176 (9) | 0.0145 (10) | −0.0032 (8) | −0.0006 (9) | 0.0008 (9) |
C6 | 0.0177 (10) | 0.0171 (10) | 0.0136 (10) | −0.0003 (8) | −0.0008 (9) | 0.0003 (8) |
C7 | 0.0250 (18) | 0.0191 (15) | 0.0115 (16) | 0.0031 (13) | 0.000 | 0.000 |
C8 | 0.0171 (10) | 0.0164 (9) | 0.0185 (11) | −0.0012 (8) | −0.0021 (9) | −0.0029 (9) |
C9 | 0.0235 (18) | 0.0126 (14) | 0.0110 (17) | −0.0001 (12) | 0.000 | 0.000 |
C10 | 0.0295 (12) | 0.0169 (10) | 0.0223 (12) | 0.0004 (9) | 0.0031 (10) | 0.0023 (9) |
N1 | 0.0213 (9) | 0.0153 (8) | 0.0166 (10) | 0.0011 (7) | 0.0018 (8) | 0.0010 (7) |
N2 | 0.0192 (9) | 0.0127 (8) | 0.0147 (9) | 0.0002 (7) | −0.0005 (8) | 0.0001 (7) |
C1—C2 | 1.386 (3) | C7—H7A | 0.9900 |
C1—C6 | 1.399 (3) | C7—H7B | 0.9900 |
C1—N2 | 1.442 (3) | C8—N1i | 1.467 (3) |
C2—C3 | 1.395 (3) | C8—N2 | 1.468 (3) |
C2—H2 | 0.9500 | C8—H8A | 0.9900 |
C3—C4 | 1.385 (3) | C8—H8B | 0.9900 |
C3—H3 | 0.9500 | C9—N2 | 1.471 (2) |
C4—C5 | 1.403 (3) | C9—N2i | 1.471 (2) |
C4—C10 | 1.515 (3) | C9—H9A | 0.9900 |
C5—C6 | 1.390 (3) | C9—H9B | 0.9900 |
C5—H5 | 0.9500 | C10—H10A | 0.9800 |
C6—N1 | 1.445 (3) | C10—H10B | 0.9800 |
C7—N1i | 1.478 (2) | C10—H10C | 0.9800 |
C7—N1 | 1.478 (2) | N1—C8i | 1.467 (3) |
C2—C1—C6 | 119.92 (19) | N1i—C8—N2 | 117.66 (16) |
C2—C1—N2 | 120.06 (19) | N1i—C8—H8A | 107.9 |
C6—C1—N2 | 120.01 (18) | N2—C8—H8A | 107.9 |
C1—C2—C3 | 120.0 (2) | N1i—C8—H8B | 107.9 |
C1—C2—H2 | 120.0 | N2—C8—H8B | 107.9 |
C3—C2—H2 | 120.0 | H8A—C8—H8B | 107.2 |
C4—C3—C2 | 120.8 (2) | N2—C9—N2i | 119.5 (3) |
C4—C3—H3 | 119.6 | N2—C9—H9A | 107.4 |
C2—C3—H3 | 119.6 | N2i—C9—H9A | 107.4 |
C3—C4—C5 | 118.80 (19) | N2—C9—H9B | 107.4 |
C3—C4—C10 | 120.40 (19) | N2i—C9—H9B | 107.4 |
C5—C4—C10 | 120.8 (2) | H9A—C9—H9B | 107.0 |
C6—C5—C4 | 120.8 (2) | C4—C10—H10A | 109.5 |
C6—C5—H5 | 119.6 | C4—C10—H10B | 109.5 |
C4—C5—H5 | 119.6 | H10A—C10—H10B | 109.5 |
C5—C6—C1 | 119.49 (19) | C4—C10—H10C | 109.5 |
C5—C6—N1 | 120.5 (2) | H10A—C10—H10C | 109.5 |
C1—C6—N1 | 120.00 (18) | H10B—C10—H10C | 109.5 |
N1i—C7—N1 | 119.8 (3) | C6—N1—C8i | 112.77 (17) |
N1i—C7—H7A | 107.4 | C6—N1—C7 | 113.10 (15) |
N1—C7—H7A | 107.4 | C8i—N1—C7 | 114.98 (15) |
N1i—C7—H7B | 107.4 | C1—N2—C8 | 112.79 (17) |
N1—C7—H7B | 107.4 | C1—N2—C9 | 113.17 (14) |
H7A—C7—H7B | 106.9 | C8—N2—C9 | 115.38 (15) |
C6—C1—C2—C3 | −1.4 (3) | C1—C6—N1—C8i | −70.2 (2) |
N2—C1—C2—C3 | 177.63 (19) | C5—C6—N1—C7 | −118.0 (2) |
C1—C2—C3—C4 | −1.9 (3) | C1—C6—N1—C7 | 62.4 (3) |
C2—C3—C4—C5 | 2.7 (3) | N1i—C7—N1—C6 | −77.89 (15) |
C2—C3—C4—C10 | −176.2 (2) | N1i—C7—N1—C8i | 53.62 (14) |
C3—C4—C5—C6 | −0.2 (3) | C2—C1—N2—C8 | 110.4 (2) |
C10—C4—C5—C6 | 178.7 (2) | C6—C1—N2—C8 | −70.6 (2) |
C4—C5—C6—C1 | −3.1 (3) | C2—C1—N2—C9 | −116.4 (2) |
C4—C5—C6—N1 | 177.34 (19) | C6—C1—N2—C9 | 62.7 (3) |
C2—C1—C6—C5 | 3.9 (3) | N1i—C8—N2—C1 | 79.7 (2) |
N2—C1—C6—C5 | −175.2 (2) | N1i—C8—N2—C9 | −52.5 (3) |
C2—C1—C6—N1 | −176.53 (19) | N2i—C9—N2—C1 | −78.27 (15) |
N2—C1—C6—N1 | 4.4 (3) | N2i—C9—N2—C8 | 53.75 (14) |
C5—C6—N1—C8i | 109.4 (2) |
Symmetry code: (i) −x+2, −y, z. |
Experimental details
Crystal data | |
Chemical formula | C18H20N4 |
Mr | 292.38 |
Crystal system, space group | Orthorhombic, Aba2 |
Temperature (K) | 100 |
a, b, c (Å) | 9.9777 (3), 18.8351 (4), 7.6963 (2) |
V (Å3) | 1446.37 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.16 × 0.15 × 0.06 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2006) |
Tmin, Tmax | 0.872, 0.995 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10245, 807, 737 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.090, 1.06 |
No. of reflections | 807 |
No. of parameters | 102 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.18 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Cg denotes the centroid of the benzene ring (C1//C2//C3//C4//C5//C6). |
Contact | C–H | C···Cg | H···Cg | C—H···Cg |
C2–H2···Cgi | 0.95 | 3.509 (2) | 2.68 | 147 |
C10–H10B···Cgii | 0.98 | 3.559 (2) | 2.61 | 163 |
Symmetry codes: (i) 3/2-x,y,1/2+z; (ii) 2-x,1/2-y,-1/2+z. |
Acknowledgements
Financial support of this research from the Division de Investigación sede Bogotá (DIB), and from the Departamento de Química, Universidad Nacional de Colombia, is gratefully acknowledged. DG-S thanks COLCIENCIAS for a fellowship.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dickinson, R. C. & Raymond, A. L. (1923). J. Am. Chem. Soc. 45, 22–29. CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Glister, J. F., Vaughan, K., Biradha, K. & Zaworotko, M. J. (2005). J. Mol. Struct. 749, 78–83. Web of Science CSD CrossRef CAS Google Scholar
Kuznetsov, A. I., Shukkur, A. H. & Kamara, K. (2007). Russ. Chem. Bull. Int. Ed. 56, 563–565. Web of Science CrossRef CAS Google Scholar
Murray-Rust, P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 1136–1141. Google Scholar
Murray-Rust, P. & Ridell, F. G. (1975). Can. J. Chem. 53, 1933–1935. CrossRef CAS Web of Science Google Scholar
Murray-Rust, P. & Smith, I. (1975). Acta Cryst. B31, 587–589. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Rivera, A. & Maldonado, M. (2006). Tetrahedron Lett. 47, 7467–7471. Web of Science CrossRef CAS Google Scholar
Rivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180–186. Web of Science CSD CrossRef CAS Google Scholar
Rivera, A., Ríos-Motta, J., Quevedo, R. & Joseph-Nathan, P. (2005). Rev. Colomb. Quim. 34, 105–115. CAS Google Scholar
Sheldrick, G. M. (2006). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Volpp, G. (1962). Chem. Ber. 95, 1493–1494. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
For many years, cyclic aminals (gem-diamine) have attracted intense attention because of their intriguing molecular structures, many of which have been determined by the X-ray crystallography (Murray-Rust, 1974; Murray-Rust & Ridell, 1975; Murray-Rust & Smith, 1975; Glister et al., 2005) and/or by 1H- and 13C-NMR spectroscopy (Kuznetsov et al., 2007). In the course of the research of the reactivity of aminals we have synthesized crystals of the title compound that contains a cyclic aminal, i. e. 2,9-dimethyl-6H,13H-5:12,7:14-dimethanedibenzo [d,i][1,3,6,8]tetraazecine.
The title molecule is shown in Fig. 1. The planes through the symmetry-related aromatic rings are almost perpendicular: the interplanar angle through the atoms C1//C2//C3//C4//C5//C6 and its mentioned symmetry-related plane by (2-x,-y,z) is 81.6 (2)°.
There are only weak intermolecular interactions present in the structure, notably C-H···π-electron ring interactions (Tab. 1, Fig. 2).