organic compounds
10-Methoxybenzo[g]imidazo[1,2-a][1,8]naphthyridine-4-carbonitrile
aDepartment of Chemistry, National Taras Shevchenko University, 64 Volodymyrska St, Kyiv 01601, Ukraine, and bLaboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse CEDEX 4, France
*Correspondence e-mail: antaran@gala.net
In the title compound, C16H10N4O, both the methoxy and nitrile substituents lie in the plane defined by the benzo[g]imidazo[1,2-a]-1,8-naphthyridine ring system, resulting in a nearly planar geometry for the entire molecule (r.m.s. deviation of the non-H atoms from the mean plane is 0.044 Å). In the solid-state, the molecules form a three-dimensional polymer through intermolecular C—H⋯N and C—H⋯O hydrogen bonds. In addition, the packing mode results in stabilizing π–π stacking interactions between the asymmetric units.
Related literature
For the synthesis of the title compound and a series of similar products, see: Volovnenko et al. (2009). For related compounds and their antibacterial or photophysical properties, see: Kondo et al. (1990); Gokhale & Seshadri (1987); Rajagopal & Seshadri (1991); Vijila et al. (2000). For the solid-state structures of other imidazonaphthyridine derivatives, see: Fun et al. (1996); Sivakumar et al. (1996a,b); Muthamizhchelvan et al. (2005a,b). For general metrical features within organic compounds, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker (2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809037544/fj2229sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809037544/fj2229Isup2.hkl
The title compound was synthesized by the reaction of 2-chloro-8-methoxyquinoline-3-carbaldehyde (2 mmol) with (1-benzyl-1H-imidazol-2-yl)acetonitrile (2 mmol) in dimethylformamide (3 ml). After refluxing for 1 h, the reaction mixture was left to stand overnight. The resulting crude solid was filtered, washed twice with acetone (10 ml) and dried. Yield: 96%. Crystals suitable for X-ray analysis were obtained by slow crystallization from hot dimethylformamide.
All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(Carom) or Uiso(H) = 1.5Ueq(Cmethyl).
Data collection: APEX2 (Bruker, 2007); cell
sAINT (Bruker (2007); data reduction: SAINT (Bruker (2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2009).Fig. 1. A perspective view of the title compound, with 50% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. A packing diagram for the title compound, evidencing C—H···N et C—H···O hydrogen bonds (blue dotted lines). | |
Fig. 3. A packing diagram for the title compound, evidencing π-π stacking interactions (red dotted lines). |
C16H10N4O | F(000) = 568 |
Mr = 274.28 | Dx = 1.483 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9999 reflections |
a = 7.710 (2) Å | θ = 2.7–34.9° |
b = 11.970 (2) Å | µ = 0.10 mm−1 |
c = 13.340 (3) Å | T = 180 K |
β = 93.55 (3)° | Block, brown |
V = 1228.8 (5) Å3 | 0.40 × 0.40 × 0.35 mm |
Z = 4 |
Bruker APEXII diffractometer | 3532 independent reflections |
Radiation source: sealed tube | 2507 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ϕ scans | θmax = 29.8°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −10→10 |
Tmin = 0.95, Tmax = 0.97 | k = −16→16 |
45253 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.164 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0616P)2 + 1.0259P] where P = (Fo2 + 2Fc2)/3 |
3532 reflections | (Δ/σ)max < 0.001 |
191 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
0 constraints |
C16H10N4O | V = 1228.8 (5) Å3 |
Mr = 274.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.710 (2) Å | µ = 0.10 mm−1 |
b = 11.970 (2) Å | T = 180 K |
c = 13.340 (3) Å | 0.40 × 0.40 × 0.35 mm |
β = 93.55 (3)° |
Bruker APEXII diffractometer | 3532 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 2507 reflections with I > 2σ(I) |
Tmin = 0.95, Tmax = 0.97 | Rint = 0.050 |
45253 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.164 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.33 e Å−3 |
3532 reflections | Δρmin = −0.34 e Å−3 |
191 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1160 (2) | 0.16186 (14) | 0.60289 (12) | 0.0239 (3) | |
C2 | 0.0449 (2) | 0.22693 (14) | 0.51977 (13) | 0.0257 (3) | |
C3 | 0.0661 (2) | 0.19331 (15) | 0.42439 (13) | 0.0264 (4) | |
H3 | 0.0201 | 0.2358 | 0.3708 | 0.032* | |
C4 | 0.1593 (2) | 0.09249 (14) | 0.40567 (12) | 0.0239 (3) | |
C5 | 0.1800 (2) | 0.05231 (15) | 0.31021 (13) | 0.0271 (4) | |
H5 | 0.1352 | 0.0921 | 0.2546 | 0.033* | |
C6 | 0.2686 (2) | −0.04838 (15) | 0.29677 (12) | 0.0262 (4) | |
C7 | 0.2865 (3) | −0.09560 (17) | 0.20044 (13) | 0.0339 (4) | |
H7 | 0.2407 | −0.0588 | 0.1433 | 0.041* | |
C8 | 0.3705 (3) | −0.19467 (18) | 0.19165 (15) | 0.0378 (5) | |
H8 | 0.3800 | −0.2260 | 0.1284 | 0.045* | |
C9 | 0.4435 (3) | −0.25045 (16) | 0.27749 (15) | 0.0344 (4) | |
H9 | 0.5029 | −0.3173 | 0.2698 | 0.041* | |
C10 | 0.4285 (2) | −0.20791 (14) | 0.37173 (13) | 0.0268 (4) | |
C11 | 0.3374 (2) | −0.10535 (14) | 0.38426 (12) | 0.0232 (3) | |
C12 | 0.2307 (2) | 0.02653 (14) | 0.48692 (12) | 0.0222 (3) | |
C13 | 0.2521 (2) | 0.01703 (15) | 0.67504 (13) | 0.0282 (4) | |
H13 | 0.3126 | −0.0494 | 0.6869 | 0.034* | |
C14 | 0.1924 (3) | 0.08839 (16) | 0.74444 (14) | 0.0329 (4) | |
H14 | 0.2065 | 0.0773 | 0.8135 | 0.039* | |
C15 | −0.0484 (2) | 0.32689 (16) | 0.54198 (14) | 0.0307 (4) | |
C16 | 0.5661 (3) | −0.36456 (17) | 0.45063 (18) | 0.0399 (5) | |
H16A | 0.4794 | −0.4139 | 0.4207 | 0.060* | |
H16B | 0.6029 | −0.3913 | 0.5164 | 0.060* | |
H16C | 0.6639 | −0.3621 | 0.4095 | 0.060* | |
N1 | 0.1082 (2) | 0.17940 (14) | 0.69986 (11) | 0.0311 (3) | |
N2 | 0.31704 (18) | −0.06777 (12) | 0.47856 (10) | 0.0231 (3) | |
N3 | 0.20387 (18) | 0.06431 (12) | 0.58360 (10) | 0.0233 (3) | |
N4 | −0.1221 (3) | 0.40663 (16) | 0.55947 (15) | 0.0451 (5) | |
O1 | 0.49489 (18) | −0.25543 (11) | 0.45838 (10) | 0.0338 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0238 (8) | 0.0251 (8) | 0.0228 (8) | −0.0042 (6) | 0.0013 (6) | 0.0000 (6) |
C2 | 0.0248 (8) | 0.0261 (8) | 0.0263 (8) | −0.0034 (6) | 0.0010 (6) | 0.0034 (6) |
C3 | 0.0277 (8) | 0.0265 (8) | 0.0248 (8) | −0.0023 (6) | −0.0009 (6) | 0.0060 (6) |
C4 | 0.0253 (8) | 0.0247 (8) | 0.0215 (7) | −0.0043 (6) | 0.0006 (6) | 0.0037 (6) |
C5 | 0.0313 (9) | 0.0297 (8) | 0.0201 (7) | −0.0062 (7) | −0.0001 (6) | 0.0037 (6) |
C6 | 0.0294 (8) | 0.0281 (8) | 0.0211 (8) | −0.0089 (7) | 0.0025 (6) | −0.0002 (6) |
C7 | 0.0440 (11) | 0.0377 (10) | 0.0205 (8) | −0.0124 (8) | 0.0049 (7) | −0.0007 (7) |
C8 | 0.0487 (12) | 0.0401 (11) | 0.0257 (9) | −0.0111 (9) | 0.0107 (8) | −0.0086 (8) |
C9 | 0.0401 (10) | 0.0298 (9) | 0.0344 (10) | −0.0070 (8) | 0.0113 (8) | −0.0078 (7) |
C10 | 0.0292 (8) | 0.0236 (8) | 0.0282 (8) | −0.0061 (6) | 0.0051 (7) | −0.0006 (6) |
C11 | 0.0249 (8) | 0.0237 (8) | 0.0213 (7) | −0.0074 (6) | 0.0031 (6) | −0.0008 (6) |
C12 | 0.0224 (7) | 0.0242 (7) | 0.0200 (7) | −0.0060 (6) | 0.0011 (6) | 0.0013 (6) |
C13 | 0.0329 (9) | 0.0296 (8) | 0.0218 (8) | −0.0015 (7) | −0.0018 (6) | 0.0046 (6) |
C14 | 0.0385 (10) | 0.0368 (10) | 0.0234 (8) | −0.0033 (8) | 0.0014 (7) | 0.0012 (7) |
C15 | 0.0314 (9) | 0.0321 (9) | 0.0285 (9) | −0.0003 (7) | 0.0019 (7) | 0.0026 (7) |
C16 | 0.0434 (11) | 0.0258 (9) | 0.0509 (13) | 0.0023 (8) | 0.0056 (9) | −0.0012 (8) |
N1 | 0.0360 (8) | 0.0337 (8) | 0.0239 (7) | −0.0032 (6) | 0.0048 (6) | −0.0023 (6) |
N2 | 0.0261 (7) | 0.0234 (7) | 0.0199 (6) | −0.0041 (5) | 0.0016 (5) | 0.0002 (5) |
N3 | 0.0260 (7) | 0.0237 (7) | 0.0199 (6) | −0.0025 (5) | 0.0000 (5) | 0.0009 (5) |
N4 | 0.0515 (11) | 0.0399 (10) | 0.0444 (10) | 0.0086 (9) | 0.0066 (8) | −0.0008 (8) |
O1 | 0.0423 (8) | 0.0264 (6) | 0.0330 (7) | 0.0034 (6) | 0.0050 (6) | 0.0004 (5) |
C1—N1 | 1.315 (2) | C9—C10 | 1.368 (3) |
C1—N3 | 1.382 (2) | C9—H9 | 0.9300 |
C1—C2 | 1.436 (2) | C10—O1 | 1.360 (2) |
C2—C3 | 1.354 (2) | C10—C11 | 1.429 (2) |
C2—C15 | 1.436 (3) | C11—N2 | 1.354 (2) |
C3—C4 | 1.434 (2) | C12—N2 | 1.319 (2) |
C3—H3 | 0.9300 | C12—N3 | 1.394 (2) |
C4—C5 | 1.380 (2) | C13—C14 | 1.361 (3) |
C4—C12 | 1.424 (2) | C13—N3 | 1.375 (2) |
C5—C6 | 1.402 (3) | C13—H13 | 0.9300 |
C5—H5 | 0.9300 | C14—N1 | 1.384 (3) |
C6—C7 | 1.418 (2) | C14—H14 | 0.9300 |
C6—C11 | 1.425 (2) | C15—N4 | 1.142 (3) |
C7—C8 | 1.360 (3) | C16—O1 | 1.423 (2) |
C7—H7 | 0.9300 | C16—H16A | 0.9600 |
C8—C9 | 1.412 (3) | C16—H16B | 0.9600 |
C8—H8 | 0.9300 | C16—H16C | 0.9600 |
N1—C1—N3 | 111.76 (15) | O1—C10—C11 | 114.95 (15) |
N1—C1—C2 | 129.36 (16) | C9—C10—C11 | 119.84 (17) |
N3—C1—C2 | 118.86 (15) | N2—C11—C6 | 122.89 (16) |
C3—C2—C1 | 120.12 (16) | N2—C11—C10 | 118.69 (15) |
C3—C2—C15 | 122.18 (16) | C6—C11—C10 | 118.41 (15) |
C1—C2—C15 | 117.70 (16) | N2—C12—N3 | 117.42 (14) |
C2—C3—C4 | 120.31 (16) | N2—C12—C4 | 125.71 (15) |
C2—C3—H3 | 119.8 | N3—C12—C4 | 116.86 (15) |
C4—C3—H3 | 119.8 | C14—C13—N3 | 105.12 (16) |
C5—C4—C12 | 116.60 (16) | C14—C13—H13 | 127.4 |
C5—C4—C3 | 122.82 (15) | N3—C13—H13 | 127.4 |
C12—C4—C3 | 120.55 (15) | C13—C14—N1 | 111.80 (16) |
C4—C5—C6 | 120.19 (16) | C13—C14—H14 | 124.1 |
C4—C5—H5 | 119.9 | N1—C14—H14 | 124.1 |
C6—C5—H5 | 119.9 | N4—C15—C2 | 179.7 (2) |
C5—C6—C7 | 122.25 (17) | O1—C16—H16A | 109.5 |
C5—C6—C11 | 117.77 (15) | O1—C16—H16B | 109.5 |
C7—C6—C11 | 119.95 (17) | H16A—C16—H16B | 109.5 |
C8—C7—C6 | 119.94 (18) | O1—C16—H16C | 109.5 |
C8—C7—H7 | 120.0 | H16A—C16—H16C | 109.5 |
C6—C7—H7 | 120.0 | H16B—C16—H16C | 109.5 |
C7—C8—C9 | 120.70 (18) | C1—N1—C14 | 104.37 (15) |
C7—C8—H8 | 119.6 | C12—N2—C11 | 116.81 (14) |
C9—C8—H8 | 119.6 | C13—N3—C1 | 106.94 (14) |
C10—C9—C8 | 121.13 (19) | C13—N3—C12 | 129.77 (15) |
C10—C9—H9 | 119.4 | C1—N3—C12 | 123.28 (14) |
C8—C9—H9 | 119.4 | C10—O1—C16 | 116.67 (15) |
O1—C10—C9 | 125.21 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1i | 0.93 | 2.50 | 3.366 (3) | 156 |
C3—H3···N1ii | 0.93 | 2.62 | 3.394 (2) | 141 |
Symmetry codes: (i) x, −y−1/2, z−1/2; (ii) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H10N4O |
Mr | 274.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 180 |
a, b, c (Å) | 7.710 (2), 11.970 (2), 13.340 (3) |
β (°) | 93.55 (3) |
V (Å3) | 1228.8 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.40 × 0.40 × 0.35 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.95, 0.97 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 45253, 3532, 2507 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.700 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.164, 1.08 |
No. of reflections | 3532 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.34 |
Computer programs: APEX2 (Bruker, 2007), sAINT (Bruker (2007), SAINT (Bruker (2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999) and publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1i | 0.9300 | 2.5000 | 3.366 (3) | 156.00 |
C3—H3···N1ii | 0.9300 | 2.6200 | 3.394 (2) | 141.00 |
Symmetry codes: (i) x, −y−1/2, z−1/2; (ii) x, −y+1/2, z−1/2. |
Cgi | Cgj | Centroid distance | Interplanar spacing i | αii | γiii |
Cg1 | Cg2iv | 3.487 (2) | 3.322 | 2.68 | 15.42 |
Cg2 | Cg1iv | 3.487 (2) | 3.361 | 2.68 | 17.68 |
Cg3 | Cg3iv | 3.710 (2) | 3.382 | 0.00 | 24.27 |
Cg1 | Cg4v | 3.689 (2) | 3.336 | 5.01 | 25.28 |
Cg4 | Cg1v | 3.689 (2) | 3.397 | 5.01 | 22.98 |
Notes: (i) perpendicular distance between the centroid of the first ring and the plane of the second ring; (ii) dihedral angle between the plane of the first ring and the plane of the second ring; (iii) angle between the centroid of the first ring and the normal to the plane of the second ring; (iv) symmetry code: -x, -y, 1-z; (v) symmetry code: 1 - x, -y,1 - z. Cg1 is the centroid of atoms N1/C1/N2/C13/C14, Cg2 is the centroid of atoms N3/C12/C4–C6/C11, Cg3 is the centroid of atoms N2/C1–C4/C12 and Cg4 is the centroid of atoms C6–C11. |
Acknowledgements
This research was performed within the framework of the GDRI `Franco–Ukrainian association of Molecular Chemistry'.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Sivakumar, K., Chua, S.-O., Ooi, M.-F., Anwair, M. A. S., Gan, E.-K. & Jackson, W. R. (1996). Acta Cryst. C52, 2231–2236. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Gokhale, U. V. & Seshadri, S. (1987). Dyes Pigm. 8, 157–163. CrossRef CAS Web of Science Google Scholar
Kondo, H., Taguchi, M., Inoue, Y., Sakamoto, F. & Tsukamoto, G. (1990). J. Med. Chem. 33, 2012–2015. CrossRef CAS PubMed Web of Science Google Scholar
Muthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005a). Acta Cryst. E61, o1377–o1380. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005b). Acta Cryst. E61, o2910–o2912. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rajagopal, R. & Seshadri, S. (1991). Dyes Pigm. 17, 57–69. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sivakumar, K., Fun, H.-K., Chua, S.-O., Ooi, M.-F., Anwair, M. A. S., Gan, E.-K. & Jackson, W. R. (1996a). Acta Cryst. C52, 2236–2239. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sivakumar, K., Fun, H.-K., Chua, S.-O., Ooi, M.-F., Anwair, M. A. S., Gan, E.-K. & Jackson, W. R. (1996b). Acta Cryst. C52, 2239–2243. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Vijila, C., Ramalingam, A., Gowri, V. S., Chua, S. O. & Sivakumar, K. (2000). Spectrochim. Acta, A56, 983–989. CrossRef Google Scholar
Volovnenko, T. A., Tarasov, A. V., Zubatyuk, R. I., Shishkin, O. V., Turov, A. V. & Volovenko, Yu. M. (2009). Chem. Heterocycl. Compd. In the press. Google Scholar
Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
New heterocyclic nitrogen-containing systems are always of great interest to synthetic as well as pharmaceutical organic chemists. We have recently reported an efficient and versatile route to benzo[g]imidazo[1,2-a]-1,8-naphthyridines upon thermal reaction of 2-chloroquinoline-3-carbaldehydes with 1-substitued hetarylacetonitriles (Volovnenko et al., 2009). Here we report the crystal structure of the one of synthesized compound, namely, 10-methoxybenzo[g]imidazo[1,2-a]-1,8-naphthyridine-4-carbonitrile. It has been reported that products with similar structures possess not only antibacterial activity (Kondo et al., 1990) but also interesting photophysical properties (Gokhale & Seshadri, 1987; Rajagopal & Seshadri, 1991; Vijila et al., 2000).
Fig. 1 shows a perspective view of the asymetric unit of the title compound, including the labelling scheme. Selected bond distances and angles are given in Table 1. The benzo[g]imidazo[1,2-a]-1,8-naphthyridine core is almost planar (RMS deviation of C1>C14 and N1>N3 from mean plane is 0.035 Å). In addition, both methoxy and carbonitrile substituents attached to C(2) and C(11), respectively, are oriented in such a way that they both lay in heterocyle plane granting a nearly planar geometry to the entire molecule (RMS deviation of the all non-hydrogen atoms from mean plane is 0.044 Å). Bond distances and angles in the title compound are normal (Allen et al., 1987) and compare well with other imidazonaphtyridines derivatives (Fun et al., 1996; Sivakumar et al..1996a,b; Muthamizhchelvan et al., 2005a,b).
The crystal structure is stabilized by C—H···N and C—H···O intermolecular hydrogen bonds (Table 1) forming a three dimensional polymeric structure (Figure 2). In addition, the asymmetric units are seen to be stacked along the (100) axis with relatively short interplanar distances (Table 3) possibly allowing additional stabilization through π–π stacking interactions (Figure 3).