Experimental
Crystal data
[Zn(NO3)2(C3H4N2)2] Mr = 325.55 Triclinic, a = 7.785 (6) Å b = 8.126 (2) Å c = 11.394 (2) Å α = 92.36 (2)° β = 99.67 (4)° γ = 96.32 (7)° V = 704.9 (6) Å3 Z = 2 Mo Kα radiation μ = 1.77 mm−1 T = 293 K 0.1 × 0.1 × 0.1 mm
|
Data collection
Enraf–Nonius CAD-4 diffractometer Absorption correction: none 3798 measured reflections 3068 independent reflections 2733 reflections with I > 2σ(I) Rint = 0.014
|
Zn1—O4 | 1.966 (3) | Zn1—O1 | 1.999 (3) | Zn1—N3 | 2.011 (3) | Zn1—N5 | 2.015 (3) | | O4—Zn1—O1 | 104.93 (12) | O4—Zn1—N3 | 113.61 (12) | O1—Zn1—N3 | 113.00 (11) | O4—Zn1—N5 | 95.75 (11) | O1—Zn1—N5 | 118.25 (12) | N3—Zn1—N5 | 110.03 (13) | | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N4—H4N⋯O1i | 0.86 | 1.96 | 2.808 (4) | 170 | N6—H6N⋯O6ii | 0.86 | 1.91 | 2.741 (4) | 161 | Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z. | |
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 EXPRESS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
Zinc(II) acetate dihydrate (0.1320 g; 0.6 mmol) and lanthanum nitrate hexahydrate (0.0433 g; 0.01 mmol) were dissolved in 10 ml of a mixture of water and methanol (1/2). To this solution was added imidazole (0.0408 g; 0.6 mmol) and tartaric acid (0.0900 g; 0.6 mmol) dissolved in 12 ml of an aqueous NaOH 0.1 M solution. After 120 m of stirring, a solution of tartaric acid (0.0900 g; 0.6 mmlol) in 5 ml of methanol was added again. The reaction mixture give white solid which was filtered and dried in air. The filtrate was left to crystallize. The crystals of (I) which formed were filtered off and dried [yield 82%]. Analysis calculated for [Zn(C3H4N2)2(NO3)2]: C 22.14, H 2.48, N 25.81%; found: C 22.09, H 2.46, N 25.78%. Spectroscopic analysis, IR (ν, cm-1): 3111, 3058, 1621, 1603, 1571, 1543, 1449, 1332 and 1072. The IR spectra were recorded with a Nicolet Magna 760 IR spectrophotometer in KBr pellets.
All H atoms were placed geometrically and refined with a riding model. Uiso(H) for H was assigned as 1.2Ueq of the attached C atoms.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: CAD-4 EXPRESS (Enraf–Nonius, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
Bis(imidazole-
κN3)bis(nitrato-
κO)zinc(II)
top Crystal data top [Zn(NO3)2(C3H4N2)2] | Z = 2 |
Mr = 325.55 | F(000) = 328 |
Triclinic, P1 | Dx = 1.534 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.785 (6) Å | Cell parameters from 25 reflections |
b = 8.126 (2) Å | θ = 11–15° |
c = 11.394 (2) Å | µ = 1.77 mm−1 |
α = 92.36 (2)° | T = 293 K |
β = 99.67 (4)° | Prism, colourless |
γ = 96.32 (7)° | 0.1 × 0.1 × 0.1 mm |
V = 704.9 (6) Å3 | |
Data collection top Enraf–Nonius CAD-4 diffractometer | 2733 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.014 |
Graphite monochromator | θmax = 27.0°, θmin = 2.5° |
ω scans | h = −9→2 |
3798 measured reflections | k = −10→10 |
3068 independent reflections | l = −14→14 |
Refinement top Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters not refined |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.0746P)2 + 0.6727P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.003 |
3068 reflections | Δρmax = 0.53 e Å−3 |
173 parameters | Δρmin = −0.64 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.017 (3) |
Crystal data top [Zn(NO3)2(C3H4N2)2] | γ = 96.32 (7)° |
Mr = 325.55 | V = 704.9 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.785 (6) Å | Mo Kα radiation |
b = 8.126 (2) Å | µ = 1.77 mm−1 |
c = 11.394 (2) Å | T = 293 K |
α = 92.36 (2)° | 0.1 × 0.1 × 0.1 mm |
β = 99.67 (4)° | |
Data collection top Enraf–Nonius CAD-4 diffractometer | 2733 reflections with I > 2σ(I) |
3798 measured reflections | Rint = 0.014 |
3068 independent reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters not refined |
S = 1.07 | Δρmax = 0.53 e Å−3 |
3068 reflections | Δρmin = −0.64 e Å−3 |
173 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Zn1 | 0.15424 (5) | 0.41605 (4) | 0.23967 (3) | 0.03654 (17) | |
O1 | 0.3369 (3) | 0.3103 (3) | 0.3456 (2) | 0.0430 (5) | |
O2 | 0.3189 (6) | 0.3208 (6) | −0.0920 (4) | 0.0971 (13) | |
O3 | 0.1851 (4) | 0.4038 (4) | 0.4754 (2) | 0.0547 (6) | |
O4 | 0.2364 (4) | 0.4269 (3) | 0.0859 (2) | 0.0558 (7) | |
O5 | 0.4232 (7) | 0.2470 (7) | 0.5506 (5) | 0.1252 (18) | |
O6 | 0.2253 (4) | 0.1542 (3) | 0.0596 (2) | 0.0574 (7) | |
N1 | 0.3052 (4) | 0.3279 (4) | 0.4537 (3) | 0.0510 (7) | |
N2 | 0.2542 (4) | 0.2947 (4) | 0.0259 (3) | 0.0503 (7) | |
N3 | −0.0884 (3) | 0.2952 (3) | 0.2279 (2) | 0.0360 (5) | |
N4 | −0.3596 (4) | 0.2487 (4) | 0.2566 (3) | 0.0477 (7) | |
H4N | −0.4528 | 0.2558 | 0.2868 | 0.057* | |
N5 | 0.1481 (4) | 0.6622 (3) | 0.2647 (2) | 0.0385 (6) | |
N6 | 0.1656 (4) | 0.9234 (3) | 0.2214 (3) | 0.0509 (7) | |
H6N | 0.1862 | 1.0114 | 0.1842 | 0.061* | |
C1 | −0.1781 (5) | 0.1749 (4) | 0.1439 (3) | 0.0440 (7) | |
H1 | −0.1308 | 0.1226 | 0.0847 | 0.053* | |
C2 | −0.3456 (5) | 0.1454 (5) | 0.1615 (4) | 0.0535 (9) | |
H2 | −0.4340 | 0.0700 | 0.1178 | 0.064* | |
C3 | −0.2038 (4) | 0.3359 (4) | 0.2941 (3) | 0.0417 (7) | |
H3 | −0.1791 | 0.4147 | 0.3581 | 0.050* | |
C4 | 0.0906 (5) | 0.7536 (4) | 0.3524 (3) | 0.0429 (7) | |
H4 | 0.0509 | 0.7110 | 0.4189 | 0.051* | |
C5 | 0.1012 (5) | 0.9154 (4) | 0.3262 (4) | 0.0507 (8) | |
H5 | 0.0708 | 1.0031 | 0.3704 | 0.061* | |
C6 | 0.1905 (5) | 0.7699 (4) | 0.1878 (3) | 0.0445 (7) | |
H6 | 0.2325 | 0.7422 | 0.1187 | 0.053* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Zn1 | 0.0395 (2) | 0.0308 (2) | 0.0420 (2) | 0.00520 (14) | 0.01374 (15) | 0.00335 (14) |
O1 | 0.0397 (12) | 0.0507 (13) | 0.0420 (12) | 0.0110 (10) | 0.0144 (10) | 0.0003 (10) |
O2 | 0.124 (3) | 0.106 (3) | 0.069 (2) | 0.009 (3) | 0.041 (2) | 0.013 (2) |
O3 | 0.0595 (16) | 0.0674 (17) | 0.0446 (13) | 0.0221 (13) | 0.0207 (12) | 0.0009 (12) |
O4 | 0.0794 (19) | 0.0442 (13) | 0.0528 (15) | 0.0118 (13) | 0.0342 (14) | 0.0027 (11) |
O5 | 0.130 (4) | 0.144 (5) | 0.095 (3) | 0.039 (3) | −0.018 (3) | 0.028 (3) |
O6 | 0.082 (2) | 0.0396 (13) | 0.0546 (15) | −0.0006 (13) | 0.0282 (14) | 0.0086 (11) |
N1 | 0.0515 (17) | 0.0519 (17) | 0.0489 (16) | 0.0010 (14) | 0.0108 (13) | 0.0008 (13) |
N2 | 0.0495 (17) | 0.0553 (18) | 0.0472 (16) | 0.0039 (14) | 0.0126 (13) | 0.0046 (13) |
N3 | 0.0364 (13) | 0.0365 (13) | 0.0361 (13) | 0.0051 (10) | 0.0094 (10) | 0.0005 (10) |
N4 | 0.0363 (14) | 0.0550 (17) | 0.0559 (17) | 0.0096 (12) | 0.0167 (13) | 0.0031 (14) |
N5 | 0.0459 (14) | 0.0319 (12) | 0.0396 (13) | 0.0048 (11) | 0.0118 (11) | 0.0051 (10) |
N6 | 0.063 (2) | 0.0332 (14) | 0.0614 (19) | 0.0060 (13) | 0.0214 (16) | 0.0147 (13) |
C1 | 0.0432 (17) | 0.0485 (18) | 0.0397 (16) | 0.0090 (14) | 0.0062 (13) | −0.0084 (14) |
C2 | 0.0428 (19) | 0.052 (2) | 0.061 (2) | 0.0028 (15) | 0.0023 (16) | −0.0091 (17) |
C3 | 0.0446 (17) | 0.0444 (17) | 0.0385 (16) | 0.0070 (14) | 0.0141 (13) | −0.0018 (13) |
C4 | 0.0528 (19) | 0.0368 (16) | 0.0407 (16) | 0.0038 (14) | 0.0138 (14) | 0.0030 (13) |
C5 | 0.063 (2) | 0.0346 (16) | 0.058 (2) | 0.0075 (15) | 0.0181 (18) | 0.0001 (15) |
C6 | 0.0516 (19) | 0.0407 (17) | 0.0453 (17) | 0.0067 (14) | 0.0178 (15) | 0.0090 (13) |
Geometric parameters (Å, º) top Zn1—O4 | 1.966 (3) | N4—H4N | 0.8600 |
Zn1—O1 | 1.999 (3) | N5—C6 | 1.320 (4) |
Zn1—N3 | 2.011 (3) | N5—C4 | 1.383 (4) |
Zn1—N5 | 2.015 (3) | N6—C6 | 1.334 (5) |
O1—N1 | 1.301 (4) | N6—C5 | 1.372 (5) |
O2—N2 | 1.526 (5) | N6—H6N | 0.8600 |
O3—N1 | 1.228 (4) | C1—C2 | 1.350 (5) |
O4—N2 | 1.282 (4) | C1—H1 | 0.9300 |
O5—N1 | 1.532 (5) | C2—H2 | 0.9300 |
O6—N2 | 1.229 (4) | C3—H3 | 0.9300 |
N3—C3 | 1.327 (4) | C4—C5 | 1.356 (5) |
N3—C1 | 1.381 (4) | C4—H4 | 0.9300 |
N4—C3 | 1.330 (5) | C5—H5 | 0.9300 |
N4—C2 | 1.369 (5) | C6—H6 | 0.9300 |
| | | |
O4—Zn1—O1 | 104.93 (12) | C4—N5—Zn1 | 131.1 (2) |
O4—Zn1—N3 | 113.61 (12) | C6—N6—C5 | 107.5 (3) |
O1—Zn1—N3 | 113.00 (11) | C6—N6—H6N | 126.2 |
O4—Zn1—N5 | 95.75 (11) | C5—N6—H6N | 126.2 |
O1—Zn1—N5 | 118.25 (12) | C2—C1—N3 | 109.0 (3) |
N3—Zn1—N5 | 110.03 (13) | C2—C1—H1 | 125.5 |
N1—O1—Zn1 | 107.0 (2) | N3—C1—H1 | 125.5 |
N2—O4—Zn1 | 121.2 (2) | C1—C2—N4 | 106.4 (3) |
O3—N1—O1 | 121.1 (3) | C1—C2—H2 | 126.8 |
O3—N1—O5 | 122.4 (4) | N4—C2—H2 | 126.8 |
O1—N1—O5 | 116.5 (3) | N3—C3—N4 | 110.7 (3) |
O6—N2—O4 | 123.7 (3) | N3—C3—H3 | 124.6 |
O6—N2—O2 | 120.5 (3) | N4—C3—H3 | 124.6 |
O4—N2—O2 | 115.8 (3) | C5—C4—N5 | 109.2 (3) |
C3—N3—C1 | 105.9 (3) | C5—C4—H4 | 125.4 |
C3—N3—Zn1 | 124.1 (2) | N5—C4—H4 | 125.4 |
C1—N3—Zn1 | 129.5 (2) | C4—C5—N6 | 106.2 (3) |
C3—N4—C2 | 108.0 (3) | C4—C5—H5 | 126.9 |
C3—N4—H4N | 126.0 | N6—C5—H5 | 126.9 |
C2—N4—H4N | 126.0 | N5—C6—N6 | 111.5 (3) |
C6—N5—C4 | 105.5 (3) | N5—C6—H6 | 124.2 |
C6—N5—Zn1 | 123.2 (2) | N6—C6—H6 | 124.2 |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4N···O1i | 0.86 | 1.96 | 2.808 (4) | 170 |
N6—H6N···O6ii | 0.86 | 1.91 | 2.741 (4) | 161 |
Symmetry codes: (i) x−1, y, z; (ii) x, y+1, z. |
Experimental details
Crystal data |
Chemical formula | [Zn(NO3)2(C3H4N2)2] |
Mr | 325.55 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.785 (6), 8.126 (2), 11.394 (2) |
α, β, γ (°) | 92.36 (2), 99.67 (4), 96.32 (7) |
V (Å3) | 704.9 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.77 |
Crystal size (mm) | 0.1 × 0.1 × 0.1 |
|
Data collection |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3798, 3068, 2733 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.638 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.127, 1.07 |
No. of reflections | 3068 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.53, −0.64 |
Selected geometric parameters (Å, º) topZn1—O4 | 1.966 (3) | Zn1—N3 | 2.011 (3) |
Zn1—O1 | 1.999 (3) | Zn1—N5 | 2.015 (3) |
| | | |
O4—Zn1—O1 | 104.93 (12) | O4—Zn1—N5 | 95.75 (11) |
O4—Zn1—N3 | 113.61 (12) | O1—Zn1—N5 | 118.25 (12) |
O1—Zn1—N3 | 113.00 (11) | N3—Zn1—N5 | 110.03 (13) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4N···O1i | 0.86 | 1.96 | 2.808 (4) | 170 |
N6—H6N···O6ii | 0.86 | 1.91 | 2.741 (4) | 161 |
Symmetry codes: (i) x−1, y, z; (ii) x, y+1, z. |
Acknowledgements
The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6301PS48)
References
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
He, K.-H., Li, J.-M. & Jiang, Y.-M. (2007). Acta Cryst. E63, m2992–m2993. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, J., Noll, B. C. & Scheidt, W. R. (2007). Acta Cryst. E63, m1048–m1049. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shaw, J. L., Gwaltney, K. P. & Keer, N. (2009). Inorg. Chim. Acta, 362, 2396-2401. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xie, Q.-A., Dong, G.-Y., Yu, Y.-M. & Wang, Y.-G. (2009). Acta Cryst. E65, m576. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access
The asymmetric unit of the title compound, contains a ZnII cation, two imidazole ligands and two nitrate anions acting as monodentate ligands (Fig. 1). In the molecule the ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two imidazole molecules and two O atoms from monodentate two nitrate groups (Table 1). The angles O4—Zn—N5 and O1—Zn—O4 are reduced while all the others angles are increased in comparison with the ideal tetrahedral angle of 109.5° (Li et al., 2007) The values of Zn–N distances, 2.011 (3) and 2.015 (3) Å, are little far to that found for tris(2-ethyl-1H-imidazole-κN3)(terephthalato-κO)zinc(II) (Xie et al. 2009) and bis(1H-imidazole-κN3)[(2-oxidobenzylideneamino)methanesulfonato-κ2N,O]zinc(II) (He et al. 2007). The Zn—O coordinating distances of 1.966 (4) and 1.999 (3) Å are comparable of those found in diphenyldipyrazolylmethane complexes with zinc(II) (Shaw et al. 2009). The mononuclear complex is joined into a two-dimensional layer by N—H···O type hydrogen-bonds; details have been provided in Table 2.