organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-N-p-tolyl­benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 2 July 2009; accepted 29 August 2009; online 26 September 2009)

In the title compound, C14H11Cl2NO, the C—N—C(=O)—C amide unit is almost planar (r.m.s. deviation = 0.0317 Å) and subtends dihedral angles of 65.93 (6) and 29.45 (7)°, respectively, to the dichloro­benzene and tolyl rings. The two aromatic rings are inclined at 37.92 (6)° to one another. In the crystal structure, N—H⋯O hydrogen bonds link the mol­ecules into chains along b. Additional weak C—H⋯Cl and C—H⋯O hydrogen bonds combine with C—H⋯π and very weak ππ contacts [CgCg distance = 4.0217 (12) Å] to stack the mol­ecules down b.

Related literature

For background to our work on benzamide derivatives, see: Saeed et al. (2008[Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976.]). For related structures see: Zhou & Zheng (2007[Zhou, B. & Zheng, P.-W. (2007). Acta Cryst. E63, o4630.]); Gowda et al. (2008a[Gowda, B. T., Tokarčík, M., Kožíšek, J. & Sowmya, B. P. (2008a). Acta Cryst. E64, o83.],b[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o340.],c[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008c). Acta Cryst. E64, o1494.], 2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Chaithanya, U. & Fuess, H. (2009). Acta Cryst. E65, o630.]); Chopra & Guru Row (2005[Chopra, D. & Guru Row, T. N. (2005). J. Mol. Struct. 733, 133-141.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11Cl2NO

  • Mr = 280.14

  • Monoclinic, P 21 /c

  • a = 9.0884 (18) Å

  • b = 9.825 (2) Å

  • c = 14.167 (3) Å

  • β = 94.208 (9)°

  • V = 1261.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 89 K

  • 0.33 × 0.26 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.753, Tmax = 0.970

  • 20982 measured reflections

  • 4465 independent reflections

  • 3463 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.132

  • S = 1.15

  • 4465 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 (2) 2.14 (2) 2.9867 (17) 168 (2)
C12—H12⋯Cl1ii 0.95 2.91 3.7372 (17) 146
C6—H6⋯O1iii 0.95 2.67 3.619 (2) 175
C7—H7⋯Cg2iv 0.95 2.65 3.4865 (17) 147
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]. Cg2 is the centroid of the C8–C13 ring.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The background to our work on benzamide derivatives has been described in a previous paper (Saeed et al., 2008). In the title compound (I), Fig. 1, the C8–N1–C1(O1)–C2 amide unit is planar, r.m.s. deviation 0.0317 Å, and subtends dihedral angles of 65.93 (6)° and 29.45 (7)° respectively to the C2···C7 dichlorobenzene and C8···C13 tolyl rings. The two aromatic rings are inclined at 37.92 (6)° to one another. Bond distances within the molecule are normal and similar to those observed in comparable structures (Zhou & Zheng, 2007; Gowda et al. 2008a,b,c 2009; Chopra & Guru Row, 2005).

In the crystal structure N—H···O hydrogen bonds link molecules in a head to tail fashion into rows along b. C7—H7···π and weak, inversion related ππ contacts involving adjacent dichlorobenene rings [Cg···Cg distance 4.0217 (12), symmetry operation 1 - x, 1 - y, 1 - z] are also observed, Table 1, Fig 2. These together with additional C—H···Cl and C—H···O hydrogen bonds link the stacks of molecules alternately head to head and head to tail down the b axis, Fig. 3.

Related literature top

For background to our work on benzamide derivatives, see: Saeed et al. (2008). For related structures see: Zhou & Zheng (2007); Gowda et al. (2008a,b,c, 2009); Chopra & Guru Row (2005).

Experimental top

2,4-Dichlorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with p-toluidine(21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue by evaporation from CHCl3 afforded the title compound (84%) as colourless needles: Anal. calcd. for C14H11Cl2NO,: C, 60.02; H, 3.96; N, 5.00%; found: C, 60.06; H, 3.92; N, 5.10%

Refinement top

The H atom bound to N1 was located in a difference Fourier map and its coordinates were refined with Uiso=1.2Ueq (N). All other H-atoms were placed in calculated positions and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ and C—H···π interactions in (I). Contacts are shown as dotted lines,the coloured spheres represent the ring centroids.
[Figure 3] Fig. 3. Crystal packing of (I) viewed down the b axis, with hydrogen bonds drawn as dashed lines.
2,4-Dichloro-N-p-tolylbenzamide top
Crystal data top
C14H11Cl2NOF(000) = 576
Mr = 280.14Dx = 1.475 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5859 reflections
a = 9.0884 (18) Åθ = 2.5–33.0°
b = 9.825 (2) ŵ = 0.50 mm1
c = 14.167 (3) ÅT = 89 K
β = 94.208 (9)°Irregular fragment, colourless
V = 1261.6 (4) Å30.33 × 0.26 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4465 independent reflections
Radiation source: fine-focus sealed tube3463 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 33.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1313
Tmin = 0.753, Tmax = 0.970k = 1413
20982 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0688P)2 + 0.2064P]
where P = (Fo2 + 2Fc2)/3
4465 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C14H11Cl2NOV = 1261.6 (4) Å3
Mr = 280.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0884 (18) ŵ = 0.50 mm1
b = 9.825 (2) ÅT = 89 K
c = 14.167 (3) Å0.33 × 0.26 × 0.06 mm
β = 94.208 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
4465 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3463 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 0.970Rint = 0.044
20982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.57 e Å3
4465 reflectionsΔρmin = 0.49 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.52742 (16)0.71474 (14)0.71812 (10)0.0111 (3)
C20.43510 (16)0.67111 (13)0.63071 (10)0.0105 (3)
C30.29263 (16)0.61878 (14)0.63334 (10)0.0121 (3)
C40.21096 (16)0.57806 (14)0.55106 (10)0.0126 (3)
H40.11470.54140.55390.015*
C50.27317 (16)0.59219 (14)0.46479 (10)0.0125 (3)
C60.41328 (16)0.64737 (14)0.45883 (10)0.0130 (3)
H60.45360.65840.39930.016*
C70.49281 (16)0.68595 (14)0.54224 (11)0.0125 (3)
H70.58870.72330.53910.015*
C80.66786 (16)0.62192 (14)0.86070 (10)0.0109 (3)
C90.77909 (17)0.71922 (15)0.87165 (11)0.0141 (3)
H90.79020.78550.82390.017*
C100.87396 (17)0.71820 (15)0.95361 (11)0.0153 (3)
H100.94980.78470.96070.018*
C110.86130 (16)0.62256 (14)1.02572 (11)0.0131 (3)
C120.74965 (17)0.52520 (15)1.01274 (11)0.0142 (3)
H120.73880.45851.06030.017*
C130.65393 (16)0.52412 (14)0.93137 (10)0.0123 (3)
H130.57890.45680.92380.015*
C140.96308 (18)0.62590 (17)1.11523 (11)0.0184 (3)
H14A0.91200.66831.16620.028*
H14B1.05150.67881.10400.028*
H14C0.99160.53281.13340.028*
N10.56897 (14)0.61267 (12)0.77821 (9)0.0120 (2)
O10.56444 (13)0.83472 (10)0.72985 (8)0.0168 (2)
Cl10.20933 (4)0.60815 (4)0.73967 (3)0.01815 (11)
Cl20.17246 (4)0.53821 (4)0.36221 (3)0.01910 (11)
H1N0.530 (2)0.534 (2)0.7672 (16)0.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0116 (6)0.0104 (6)0.0112 (6)0.0005 (5)0.0004 (5)0.0007 (5)
C20.0122 (6)0.0073 (6)0.0117 (6)0.0008 (4)0.0010 (5)0.0009 (4)
C30.0135 (6)0.0120 (6)0.0107 (6)0.0020 (5)0.0011 (5)0.0023 (5)
C40.0108 (6)0.0127 (6)0.0141 (7)0.0008 (5)0.0005 (5)0.0009 (5)
C50.0145 (6)0.0111 (6)0.0115 (6)0.0015 (5)0.0020 (5)0.0012 (5)
C60.0154 (6)0.0114 (6)0.0123 (6)0.0003 (5)0.0022 (5)0.0005 (5)
C70.0127 (6)0.0095 (6)0.0153 (7)0.0011 (5)0.0005 (5)0.0005 (5)
C80.0121 (6)0.0091 (6)0.0112 (6)0.0016 (4)0.0006 (5)0.0013 (4)
C90.0154 (6)0.0127 (6)0.0137 (6)0.0026 (5)0.0014 (5)0.0035 (5)
C100.0141 (7)0.0134 (6)0.0179 (7)0.0031 (5)0.0015 (6)0.0003 (5)
C110.0117 (6)0.0141 (6)0.0133 (6)0.0011 (5)0.0008 (5)0.0002 (5)
C120.0166 (7)0.0131 (6)0.0125 (6)0.0014 (5)0.0008 (5)0.0026 (5)
C130.0130 (6)0.0103 (6)0.0134 (6)0.0019 (5)0.0001 (5)0.0005 (5)
C140.0182 (7)0.0217 (7)0.0145 (7)0.0031 (6)0.0037 (6)0.0012 (6)
N10.0154 (6)0.0084 (5)0.0115 (6)0.0014 (4)0.0034 (5)0.0006 (4)
O10.0210 (6)0.0084 (5)0.0199 (5)0.0009 (4)0.0056 (4)0.0009 (4)
Cl10.01473 (18)0.0284 (2)0.01157 (18)0.00040 (13)0.00261 (13)0.00371 (13)
Cl20.01772 (19)0.0254 (2)0.01362 (18)0.00149 (13)0.00263 (14)0.00494 (13)
Geometric parameters (Å, º) top
C1—O11.2338 (17)C8—C131.400 (2)
C1—N11.3512 (18)C8—N11.4240 (18)
C1—C21.5062 (19)C9—C101.395 (2)
C2—C31.396 (2)C9—H90.9500
C2—C71.401 (2)C10—C111.399 (2)
C3—C41.394 (2)C10—H100.9500
C3—Cl11.7379 (16)C11—C121.397 (2)
C4—C51.391 (2)C11—C141.514 (2)
C4—H40.9500C12—C131.392 (2)
C5—C61.392 (2)C12—H120.9500
C5—Cl21.7423 (15)C13—H130.9500
C6—C71.392 (2)C14—H14A0.9800
C6—H60.9500C14—H14B0.9800
C7—H70.9500C14—H14C0.9800
C8—C91.392 (2)N1—H1N0.86 (2)
O1—C1—N1124.29 (13)C8—C9—C10119.17 (13)
O1—C1—C2120.84 (12)C8—C9—H9120.4
N1—C1—C2114.82 (12)C10—C9—H9120.4
C3—C2—C7118.10 (13)C9—C10—C11122.27 (14)
C3—C2—C1122.99 (13)C9—C10—H10118.9
C7—C2—C1118.90 (13)C11—C10—H10118.9
C4—C3—C2121.42 (14)C12—C11—C10117.50 (13)
C4—C3—Cl1117.94 (12)C12—C11—C14121.22 (14)
C2—C3—Cl1120.61 (11)C10—C11—C14121.27 (13)
C5—C4—C3118.71 (14)C13—C12—C11121.19 (14)
C5—C4—H4120.6C13—C12—H12119.4
C3—C4—H4120.6C11—C12—H12119.4
C4—C5—C6121.66 (13)C12—C13—C8120.20 (13)
C4—C5—Cl2118.69 (11)C12—C13—H13119.9
C6—C5—Cl2119.65 (12)C8—C13—H13119.9
C7—C6—C5118.36 (14)C11—C14—H14A109.5
C7—C6—H6120.8C11—C14—H14B109.5
C5—C6—H6120.8H14A—C14—H14B109.5
C6—C7—C2121.72 (13)C11—C14—H14C109.5
C6—C7—H7119.1H14A—C14—H14C109.5
C2—C7—H7119.1H14B—C14—H14C109.5
C9—C8—C13119.66 (13)C1—N1—C8126.87 (12)
C9—C8—N1123.01 (13)C1—N1—H1N117.5 (14)
C13—C8—N1117.28 (12)C8—N1—H1N115.6 (14)
O1—C1—C2—C3115.79 (17)C1—C2—C7—C6179.87 (12)
N1—C1—C2—C366.64 (18)C13—C8—C9—C100.6 (2)
O1—C1—C2—C762.85 (19)N1—C8—C9—C10178.01 (14)
N1—C1—C2—C7114.72 (15)C8—C9—C10—C110.1 (2)
C7—C2—C3—C42.0 (2)C9—C10—C11—C120.6 (2)
C1—C2—C3—C4179.31 (13)C9—C10—C11—C14178.33 (15)
C7—C2—C3—Cl1175.69 (10)C10—C11—C12—C130.5 (2)
C1—C2—C3—Cl12.96 (19)C14—C11—C12—C13178.50 (14)
C2—C3—C4—C50.9 (2)C11—C12—C13—C80.2 (2)
Cl1—C3—C4—C5176.86 (11)C9—C8—C13—C120.8 (2)
C3—C4—C5—C60.9 (2)N1—C8—C13—C12178.32 (13)
C3—C4—C5—Cl2178.77 (11)O1—C1—N1—C84.3 (2)
C4—C5—C6—C71.5 (2)C2—C1—N1—C8173.21 (13)
Cl2—C5—C6—C7178.17 (11)C9—C8—N1—C126.7 (2)
C5—C6—C7—C20.3 (2)C13—C8—N1—C1155.92 (15)
C3—C2—C7—C61.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (2)2.14 (2)2.9867 (17)168 (2)
C12—H12···Cl1ii0.952.913.7372 (17)146
C6—H6···O1iii0.952.673.619 (2)175
C7—H7···Cg2iv0.952.653.4865 (17)147
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11Cl2NO
Mr280.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)89
a, b, c (Å)9.0884 (18), 9.825 (2), 14.167 (3)
β (°) 94.208 (9)
V3)1261.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.33 × 0.26 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.753, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
20982, 4465, 3463
Rint0.044
(sin θ/λ)max1)0.769
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.132, 1.15
No. of reflections4465
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.49

Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (2)2.14 (2)2.9867 (17)168 (2)
C12—H12···Cl1ii0.952.913.7372 (17)145.8
C6—H6···O1iii0.952.673.619 (2)174.8
C7—H7···Cg2iv0.952.653.4865 (17)147
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

We thank the University of Otago for purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, D. & Guru Row, T. N. (2005). J. Mol. Struct. 733, 133–141.  Web of Science CSD CrossRef CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Chaithanya, U. & Fuess, H. (2009). Acta Cryst. E65, o630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J. & Sowmya, B. P. (2008a). Acta Cryst. E64, o83.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008c). Acta Cryst. E64, o1494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZhou, B. & Zheng, P.-W. (2007). Acta Cryst. E63, o4630.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds